Chain code compression

Since 2005

Chain codes are set of commands, which control the movement through the boundary of a geometric shape. The first chain codes have been proposed by Freeman back in 1961 (Freeman chain code in eight and four directions (usually denoted as F4 and F8)). In 1991 Bribiesca introduces Vertex Chain Code (VCC), while in 2005 Sánchez-Cruz and Rodríguez-Dagnino developed Three OrThogonal (3OT) chain code. In 2016 Žalik proposed Unsigned Manhattan Chain Codes (UMCC).

Although chain codes already represent the comprehensive description of the 2D rasterized objects, they can be further compressed and this is where our research interest is.

Chain code generator (for Windows)

Benchmark datasets:


Y.-K. Liu, B. Žalik, An efficient chain code with Huffman coding, Pattern Recognition 38 (4) (2004) 553-557. 

Y.-K. Liu, W. Wei, P.-J. Wang, B. Žalik, Compressed vertex chain codes, Pattern Recognition 40 (11) (2007) 2908-2913. 

Y.-K. Liu, B. Žalik, P.-J. Wang, D. Podgorelec, Directional difference chain codes with quasi-lossless compression and run-length encoding, Signal processing, Image communication 27 (9) (2012) 973-984. 

L., Linghua, L., Yining, L., Yongkui, B. ŽALIK, Evaluation and comparison on the techniques of vertex chain codes, Journal of software 7(12) (2012)  2840-2848.

B. Žalik, N. Lukač, Chain code lossless compression using Move-To-Front transform and adaptive Run-Length Encoding, Signal Processing: Image Communication 29 (1) (2014) 96-106.

B. Žalik, D. Mongus, N. Lukač, A universal chain code compression method, Journal of visual communication and image representation 29 (2015) 8-15.

B. Žalik, D. Mongus, Y.K. Liu, N. Lukač. Unsigned Manhattan Chain Code, Journal of visual communication and image representation 38 (2016) 186-194.

B. Žalik, D. Mongus, K. Rizman Žalik, N. Lukač . Chain code compression using string transformation techniques. Digital signal processing (53) (2016) 1-10.

B. Žalik, D. Mongus, K. Rizman Žalik, N. Lukač. Boolean operations on rasterized shapes represented by chain codes using space filling curves. Journal of visual communication and image representation 49 (2017) 420-432.

B. Žalik, D. Mongus, N. Lukač, K. Rizman Žalik. Efficient chain code compression with interpolative coding. Information sciences 439/440 (2018) 39-49.

B. Žalik, K. Rizman Žalik, E. Zupančič, N.Lukač, M. Žalik, D. Mongus. Chain code compression with modified interpolative coding. Computers & electrical engineering 77 (July 2019) 27-36.

A. Nerat, D. Strnad, E. Zupančič, B. Žalik. Extended algorithm to construct a quadtree from Freeman chain code in four directions. Image Analysis & Stereology, 38(3), (2019), 227-235.

D. Strnad, Š. Kohek, A. Nerat, B. Žalik. Efficient representation of geometric tree models with level-of-detail using compressed 3D chain code. IEEE Transactions on Visualization and Computer Graphics (in press).

B. Žalik, D. Mongus, K. Rizman Žalik, D. Podgorelec, N. Lukač. Lossless chain code compression with an improved Binary Adaptive Sequential Coding of zero-runs. Journal of Visual Communication and Image Representation 75 (2021) 1-10.

B. Žalik, D. Mongus, N. Lukač, K. Rizman Žalik. Can Burrows-Wheeler Transform be replaced in chain code compression?. Information sciences. [Print ed.]. July 2020, vol. 525, str. 109-118.