

CHAIN CODE FOR MULTI-RESOLUTION ENCODING OF RASTERIZED 2D GEOMETRIC OBJECTS

Maribor, 15. 4. 2025

Andrej Nerat

Faculty of Electrical Engineering and Computer Science

Institute of Computer Science Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

Compromise

Motivation

- Chain code -> efficient description of 2d geometric objects;
- Can be used for presentation or for determining object/shape properties;

Basic idea

- Crack F4 chain code, which starts at coarser grid point, in a 2x2 cell [Chen & Chen, 2001]:
 - Four F4 moves reach coarser grid point;
 - Four F4 moves leave the coarser grid cell;
- Building block is a quadruple $Q^A = \langle s_0^A, s_1^A, s_2^A, s_3^A \rangle$;

Basic goals

- Input: crack Freeman chain code in four directions (S_0) ;
- Map at most four symbols from input chain code into at most three symbols in the coarse F4 chain code;
- All combinations of four symbols of F4 alphabet => base alphabet for new multiresolution chain code (VVK, MrCC);
- Reducing 256 symbols of new alphabet to at most 32 symbols;

Solution overview

200

Solution overview

Correct the starting point

Remove all dangling edge sequences

- 256 possible sequences of four F4 symbols $\langle s_0^A, s_1^A, s_2^A, s_3^A \rangle$;
- Combinations with dangling edges can be removed;
- Grid point reached after two moves: $s_0^A = s_1^A$;

Rotations;

$$\Delta(Q) = \langle s_0^A, \delta_q \rangle, \quad q = \{1, 2, 3\}$$
where
$$\delta_q = \begin{cases} F; & \text{if } s_q^A = s_{q-1}^A \\ L; & \text{if } s_q^A = (s_{q-1}^A + 1) \mod 4 \\ R; & \text{if } s_q^A = (s_{q-1}^A + 3) \mod 4 \end{cases}$$

$\langle \delta_1, \delta_2, \delta_3 \rangle$	MrCC	Ψ_{CW}	Ψ_{CCW}	$A = \langle \overline{s_a}, s_3^A \rangle$
$\langle F, \delta_2, \delta_3 \rangle$	A	$\langle 0 \rangle$	$\langle 0 \rangle$	
$\langle L, R, F \rangle$	В	$\langle 1, 0 \rangle$	$\langle 0 \rangle$	\checkmark
$\langle L, R, L \rangle$	С	$\langle 1, 0 \rangle$	$\langle 0,1 \rangle$	
$\langle L, R, R \rangle$	D	$\langle 1, 0, 3 \rangle$	$\langle 0 \rangle$	
$\langle L, F, R \rangle$	E	$\langle 1, 0 \rangle$	$\langle 0,1 \rangle$	
$\langle L, F, F \rangle$	F	$\langle 1 \rangle$	$\langle 0,1 \rangle$	\checkmark
$\langle L, F, L \rangle$	G	$\langle 1 \rangle$	$\langle 0, 1, 2 \rangle$	
$\langle L, L, R \rangle$	Н	$\langle 1 \rangle$	$\langle 0, 1, 2 \rangle$	
$\langle L, L, F \rangle$	Ι	$\langle \rangle$	$\langle 0, 1, 2 \rangle$	\checkmark
$\langle L, L, L \rangle$	J	$\langle \rangle$	$\langle \rangle$	
$\langle R, L, F \rangle$	L	$\langle 0 \rangle$	$\langle 3, 0 \rangle$	\checkmark
$\langle R, L, L \rangle$	Μ	$\langle 0 \rangle$	$\langle 3, 0, 1 \rangle$	
$\langle R, L, R \rangle$	N	$\langle 0,3 \rangle$	$\langle 3,0 \rangle$	
$\langle R, R, R \rangle$	0	$\langle \rangle$	$\langle \rangle$	
$\langle R, R, F \rangle$	Р	$\langle 0, 3, 2 \rangle$	$\langle \rangle$	\checkmark
$\langle R, R, L \rangle$	Q	$\langle 0, 3, 2 \rangle$	$\langle 3 \rangle$	
$\langle R, F, L \rangle$	R	$\langle 0,3 \rangle$	$\langle 3,0\rangle$	
$\langle R, F, R \rangle$	S	$\langle 0, 3, 2 \rangle$	$\langle 3 \rangle$	
$\langle R, F, F \rangle$	Т	$\langle 0, 3 \rangle$	$\langle 3 \rangle$	\checkmark

$$\forall \psi_t \in \Psi_{\{CCW, CW\}} \Rightarrow s_t = (\psi_t + s_0^A) \bmod 4$$

Construction of coarser F4 chain code

Algorithm 1 Construct coarser chain code 1: **procedure** ConstructCoarser(S_l) $S'_l \leftarrow \text{AdjustStartingPoint}(S_l)$ 2: $S_l'' \leftarrow \text{RemoveDanglingEdges}(S_l')$ 3: $S_{l+1}, Z_l, A \leftarrow \emptyset$ 4: while $|S_I''| > 0$ do 5: $Q^A \leftarrow \text{GetQuadruple}(S_I'', A)$ 6: $\langle s_0^A, \delta_1, \delta_2, \delta_3 \rangle \leftarrow \Delta(Q^{\hat{A}})$ 7: \triangleright use (5) $z, \Psi, A \leftarrow \text{LookUp}(\langle \delta_1, \delta_2, \delta_3 \rangle)$ 8: $Z_l \leftarrow Z_l \cup \langle z \rangle$ \triangleright append z to Z_l 9: for all $\psi_t \in \Psi$ do 10: $s_t \leftarrow (\psi_t + s_0^A) \mod 4$ ⊳ use (6) 11: $S_{l+1} \leftarrow S_{l+1} \cup \langle s_t \rangle \qquad \rhd \text{ append } s_t \text{ to } S_{l+1}$ 12: end for 13: end while 14: return Z_l, S_{l+1} 15: 16: end procedure

Progressive decoding

Algorithm 2 Decode MrCC layer 1: procedure ConstructF4(Z_l, S_{l+1}) $Adjust_{prev} \leftarrow false$ 2: 3: $S_l \leftarrow \emptyset$ for all $z_k \in Z_l$ do 4: $\langle \delta_1, \delta_2, \delta_3 \rangle, |\Psi|, IsAdjust \leftarrow LookUp(z_k)$ 5: if not(IsProvided(s_0^A)) then 6: $S^t \leftarrow \text{GetNextSubsequence}(S_{l+1}, |\Psi|)$ 7: $s_0^A = (s_0^t - \psi_0 + 4) \mod 4 \qquad \triangleright \text{ use (7)}$ 8: end if 9: $Q^A \leftarrow \Delta^{-1}(\langle s_0^A, \delta_1, \delta_2, \delta_3 \rangle) \qquad \qquad \triangleright \text{ invert } (5)$ 10: $Q^A \leftarrow \text{ClearAdjustment}(Q^A, Adjust_{prev})$ 11: $S_l \leftarrow S_l \cup Q^A$ \triangleright append Q^A to S_l 12: $Adjust_{prev} \leftarrow IsAdjust$ 13: end for 14: return S₁ 15: 16: end procedure

Example

$$S_1 = \langle 0,3,0,3,3,0,3,3,0,3,3,2,2,1,2,1,1,2,2,3, \\ 3,2,3,2,2,1,1,0,1,1,0,1,1,0,1,0 \rangle$$

$$Z_{0} = \langle E, 3, B, 3, H, 2, B, 3, H, 2, B, 3, B, 2, \\E, 1, B, 1, H, 0, F, 1, G, 1, L, 3, C, 2, T, 3, B, 1, \\C, 0, L, 1, C, 0, L, 1, C, 0, R, 1, l \rangle$$

Lookup table - appendix

$$\delta_{1} = F \Rightarrow \Psi_{CW} = \langle 0 \rangle;$$

$$\delta_{1} = L \Rightarrow \Psi_{CW} = \langle 1, 0, 3 \rangle_{|0..3};$$

$$\delta_{1} = R \Rightarrow \Psi_{CW} = \langle 0, 3, 2 \rangle_{|0..3};$$

$$\delta_{3} = F \Rightarrow \text{remainder } A = \langle \overline{s_{a}}, s_{3}^{A} \rangle \text{ is required}:$$

$$\circ \Delta(Q^{A+}) = \begin{cases} \langle s_{0}^{A}, \delta_{1}, \delta_{2}, L \rangle; & CW \\ \langle s_{0}^{A}, \delta_{1}, \delta_{2}, R \rangle; & CCW \end{cases}$$

• Based on above:

•
$$\psi_0^{CW} = \begin{cases} 0; & \delta_1 = F \lor \delta_1 = R \\ 1; & \delta_1 = L \end{cases}$$

• $\psi_i^{CW} = (\psi_{i-1}^{CW} + 3) \mod 4$
• Of course, we must determine $|\Psi|(\Delta);$

$\langle \delta_1, \delta_2, \delta_3 \rangle$	Ψ_{CW}	$A = \langle \overline{s_a}, s_3^A \rangle$
$\langle F, \delta_2, \delta_3 \rangle$	$\langle 0 \rangle$	
$\langle L, R, F \rangle$	$\langle 1, 0 \rangle$	\checkmark
$\langle L, R, L \rangle$	$\langle 1, 0 \rangle$	
$\langle L, R, R \rangle$	$\langle 1, 0, 3 \rangle$	
$\langle L, F, R \rangle$	$\langle 1, 0 \rangle$	
$\langle L, F, F \rangle$	$\langle 1 \rangle$	\checkmark
$\langle L, F, L \rangle$	$\langle 1 \rangle$	
$\langle L, L, R \rangle$	$\langle 1 \rangle$	
$\langle L, L, F \rangle$	$\langle \rangle$	\checkmark
$\langle L, L, L \rangle$	$\langle \rangle$	
$\langle R, L, F \rangle$	$\langle 0 \rangle$	\checkmark
$\langle R, L, L \rangle$	$\langle 0 \rangle$	
$\langle R, L, R \rangle$	$\langle 0,3 \rangle$	
$\langle R, R, R \rangle$	$\langle \rangle$	
$\langle R, R, F \rangle$	$\langle 0, 3, 2 \rangle$	\checkmark
$\langle R, R, L \rangle$	$\langle 0, 3, 2 \rangle$	
$\langle R, F, L \rangle$	$\langle 0, 3 \rangle$	
$\langle R, F, R \rangle$	$\langle 0, 3, 2 \rangle$	
$\langle R, F, F \rangle$	$\langle 0, 3 \rangle$	\checkmark

 $\overline{s_a}$

	Map subsequence of $\Delta \mapsto \mathbb{Z}$:	$\langle F, \delta_2, \delta_3 \rangle$	0	0
	$\int -1 \cdot \delta - R$	$\langle L, L, L \rangle$	6	6
	$(\delta) = \int_{-\infty}^{1} 0 = K$	$\langle L, R, R \rangle$	1	1
	0; 0 = F	$\langle L, R, L \rangle$	2	4
	$ \begin{pmatrix} 1; & o = L \\ c & c \end{pmatrix} $	$\langle L, F, R \rangle$	3	2
	$0; \lambda(\delta_1) = 0$	$\langle L, F, L \rangle$	4	5
	$\alpha\lambda(\delta_1) + \beta\lambda(\delta_2) + \gamma\lambda(\delta_3);$ otherwise	$\langle L, L, R \rangle$	5	3
•	α must be large enough for $\delta_1 = R \Rightarrow \tau < 0$ and $\delta_1 = L \Rightarrow$	$\langle R, R, R \rangle$	-6	-6
	$\tau > 0$	$\langle R, R, L \rangle$	-5	-3
	Observing possible options ($\beta = \gamma; \beta = \nu, \gamma = \nu + \xi; \beta = \nu + \xi$	$\langle R, F, R \rangle$	-4	-5
	$\xi, \gamma = \nu$):	$\langle R, L, R \rangle$	-2	-4
	1. $\alpha = \frac{7}{2}, \beta = 2, \gamma = \frac{1}{2}$	$\langle R, F, L \rangle$	-3	-2
	2. $\alpha = \frac{7}{7}, \beta = 1, \gamma = \frac{3}{7}$	$\langle R, L, L \rangle$	-1	-1

FERI

 au_1

 $\langle \delta_1, \delta_2, \delta_3
angle$

Faculty of Electrical Engineering and Computer Science

 τ_2

ŻĠ

$$\Psi_{CW}|(\Delta) = \rho(\Delta) = \begin{cases} \left(\left\lfloor \frac{-\tau_1(\Delta)}{2} \right\rfloor + 1 \right) \mod 4; & \tau_1(\Delta) \le 0 \\ & 3 - \lfloor \frac{\tau_1(\Delta)}{2} \rfloor; & x > 0 \end{cases}$$

•
$$\psi_0^{CW} = \begin{cases} 0; & \tau \le 0 \\ 1; & \tau > 0 \end{cases}$$

• $\psi_i^{CW} = (\psi_{i-1}^{CW} + 3) \mod 4$

$$|\Psi_{CW}|(\Delta) = \rho(\Delta) = \begin{cases} 1; \quad \tau_2(\Delta) = 0 \\ \left(-\tau_2(\Delta) + 2\left\lfloor\frac{-\tau_2(\Delta)}{4}\right\rfloor\right) \mod 4; \quad \tau_2(\Delta) < 0 \\ 4 - \tau_2(\Delta) + 2\left\lfloor\frac{\tau_2(\Delta)}{4}\right\rfloor; \quad \tau_2(\Delta) > 0 \end{cases}$$

Huffman codes

ŻĠ

MrCC	Probability [%]	Huffman code
A	28.917	10
В	5.613	0110
С	10.021	000
D	0.034	11010011001
E	4.536	11011
F	8.277	1111
G	1.556	011101
H	2.871	01111
Ι	0.167	1101001101
J	0.465	11010010
K	0.381	11010000
L	6.195	1100
M	0.248	110100111
N	10.146	010
0	0.001	110100110000
Р	0.019	110100110001
Q	2.565	00101
R	5.190	0011
S	1.137	001000
Т	8.192	1110
i	1.770	110101
j	0.047	001001
k	1.264	011100
1	0.388	11010001

Results

Results

220

Shape	$ S_0 $	Holes	L	No. of F4 bits	No. of MrCC bits	Ratio[%]
Buddha	11366	1	11	45484	37200	82
Butterfly	64448	126	12	266416	226645	85
Camel	20156	9	12	80996	63261	78
Cats	22238	5	12	89052	68502	77
Cupid	25160	4	11	100636	74565	74
Detective	14128	2	11	56636	43846	77
Dragon	26334	2	12	105112	78040	74
Fiddlers	27050	25	12	109756	87880	80
Frog	20646	4	12	82364	64896	79
Girl on bike	50752	52	12	206656	170067	82
Mockingbird	17800	4	12	71396	55208	77
Reindeer	19864	4	12	79284	62228	78
Rooster	32894	9	11	131356	102941	78
Skunk	23960	3	12	96088	74376	77
Smiley	16210	3	12	65096	50088	77
Spider	23900	0	12	95116	73512	77
Wolf	22058	1	12	88264	66765	76

Bibliography

► IEEE Access (Q2):

Andrej Nerat, Damjan Strnad, Krista Rizman Žalik, Borut Žalik. An effcient multi-resolution chain coding. IEEE Access, 2024, 11 pp.

▶ Image analysis & stereology (Q4; while sending Q2 😕):

Andrej Nerat, Damjan Strnad, Eva Zupančič, Borut Žalik. **Extended algorithm to construct a quadtree from Freeman chain code in four directions.** Image analysis & stereology : official journal of the International Society for Stereology. 2019, 227-235 (Scopus: 2 citations, 1 citation without selfcitations).