
Compression of Mesh Sequences

Libor Váša

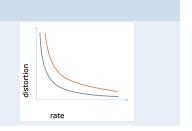
Department of Computer Science and Engineering Faculty of Applied Sciences University of West Bohemia

November 15, 2024

Context

Motivation

Necessary for storing, transmitting, and processing large volumes of data.


Data Compression

Motivation

Necessary for storing, transmitting, and processing large volumes of data.

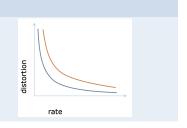
Lossy Compression

- essential for data intended for human observers
- usually significantly more efficient than lossless
- more complex evaluation RD curve

Data Compression

Motivation

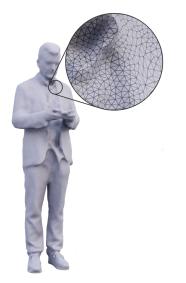
Necessary for storing, transmitting, and processing large volumes of data.


Lossy Compression

- essential for data intended for human observers
- usually significantly more efficient than lossless
- more complex evaluation RD curve

Fundamentally important because **details = realism**

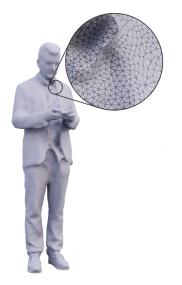
Triangle Meshes



- widely used in industry: entertainment, film, ...
- represent the shape of an object

Triangle Meshes

- widely used in industry: entertainment, film, ...
- represent the shape of an object


Geometry

- vertex coordinates
- triplets of floating point numbers

 $\mathcal{G} = \{ [x_i, y_i, z_i] \}_{i=0}^{V-1}$

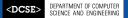
Triangle Meshes

- widely used in industry: entertainment, film, ...
- represent the shape of an object

Geometry

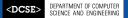
- vertex coordinates
- triplets of floating point numbers

 $\mathcal{G} = \{ [x_i, y_i, z_i] \}_{i=0}^{V-1}$


Connectivity

- represents triangles
- triplets of integers

 $\mathcal{T} = \{[a_i, b_i, c_i]\}_{i=0}^{T-1}$


Compression of Mesh Sequences - Constant Connectivity

Original Approach

express frames as a linear combination of a basis

Original Approach

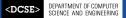
express frames as a linear combination of a basis

New Approach

express trajectories as a linear combination of a basis

Original Approach

express frames as a linear combination of a basis


New Approach

express trajectories as a linear combination of a basis

- can be combined with predictions
 - Parallelogram: P = L + R B
 - Weighted parallelogram:

$$P = w_1 L + w_2 R - (1 - w_1 - w_2) B$$

Original Approach

express frames as a linear combination of a basis

New Approach

express trajectories as a linear combination of a basis

- can be combined with predictions
 - Parallelogram: P = L + R B
 - Weighted parallelogram:

$$P = w_1 L + w_2 R - (1 - w_1 - w_2) B$$

• data rate < 1bpfv without visible data distortion

Váša, L., & Skala, V. (2007, May). Coddyac: Connectivity driven dynamic mesh compression. In 2007 3DTV Conference (pp. 1-4). IEEE. Váša, L., & Petřík, O. (2011, August). Optimising perceived distortion in lossy encoding of dynamic meshes. In Computer Graphics Forum (Vol. 30, No. 5, pp. 1439-1449). Oxford, UK: Blackwell Publishing Ltd.

Compression of Mesh Sequences - Varying Connectivity

Open Problem

Best results so far achieved by per-frame compression.

Dvořák, J., Hácha, F, Arvanitis, G., Podgorelec, D., Moustakas, K., Váša, L.: A Survey of Inter-Prediction Methods for Time-Varying Mesh Compression, submitted to Computer Graphics Forum, 2024 (2nd revision).

Open Problem

Best results so far achieved by per-frame compression.

Dvořák, J., Hácha, F. Arvanitis, G., Podgorelec, D., Moustakas, K., Váša, L.: A Survey of Inter-Prediction Methods for Time-Varying Mesh Compression, submitted to Computer Graphics Forum, 2024 (2nd revision).

Core Problem

Vertex coordinates contain inseparably

- information on sampling of the surface (no inter-frame coherence)
- information on **shape** of the surface (high inter-frame coherence)

Open Problem

Best results so far achieved by per-frame compression.

Dvořák, J., Hácha, F. Arvanitis, G., Podgorelec, D., Moustakas, K., Váša, L.: A Survey of Inter-Prediction Methods for Time-Varying Mesh Compression, submitted to Computer Graphics Forum, 2024 (2nd revision).

Core Problem

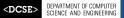
Vertex coordinates contain inseparably

- information on sampling of the surface (no inter-frame coherence)
- information on **shape** of the surface (high inter-frame coherence)

Research Goal

- extract information on shape and its development over time
- use the information in encoding frames

Correspondence in Mesh Sequences



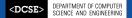
Surface Correspondence

- Difficult to establish
- Not bijective contact surfaces

Correspondence in Mesh Sequences

Surface Correspondence

- Difficult to establish
- Not bijective contact surfaces

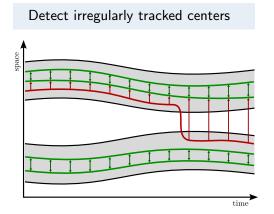

Correspondence of Volume Elements

- Bijective for a wide range of realistic data
- Can be established by optimizing appropriate criteria

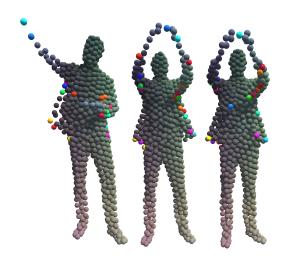
Dvořák, J., Vaněček, P., & Váša, L. (2021, June). Towards understanding time-varying triangle meshes. In International Conference on Computational Science (pp. 45-58). Cham: Springer International Publishing.

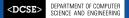
Dvořák, J., Káčereková, Z., Vaněček, P., Hruda, L., & Váša, L. (2022). As-rigid-as-possible volume tracking for time-varying surfaces. Computers & Graphics, 102, 329-338.

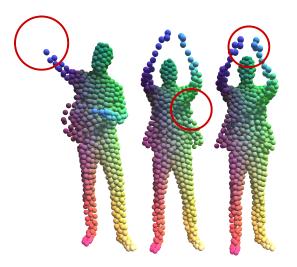
Volume Element Tracking



• similarity of trajectories E_s

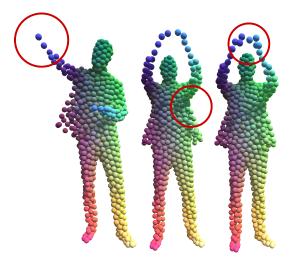

 \blacksquare uniform sampling of the mesh interior E_u





$$I_i = \min_j \|\mathbf{c}_i - \mathbf{c}_j\|_2^2$$

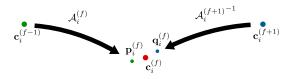
Remove them

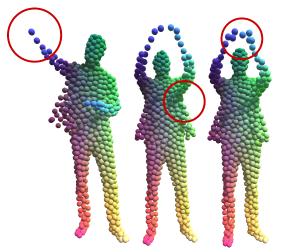


Temporally global optimization

$$\hat{E} = \hat{E}_s + \hat{\beta}\hat{E}_u$$

Similar to forward tracking, however, evaluated over all the frames.



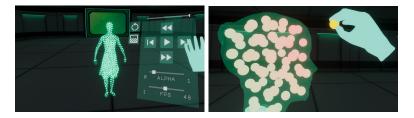


Temporally global optimization

$$\hat{E} = \hat{E}_s + \hat{\beta}\hat{E}_u$$

Forward and backward rigid predictions

Animation Editing

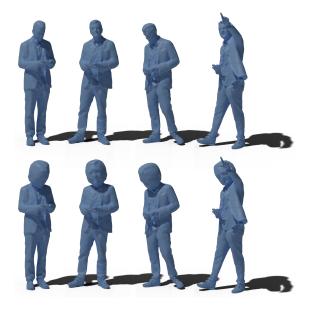

- allows propagation of changes over time while preserving variable connectivity
- allows consideration of time-global information

Hácha, F., Dvořák, J., Káčereková, Z., & Váša, L. (2024). Editing mesh sequences with varying connectivity. Computers & Graphics, 121, 103943.

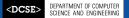
Animation Editing

- allows propagation of changes over time while preserving variable connectivity
- allows consideration of time-global information

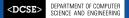
Hácha, F., Dvořák, J., Káčereková, Z., & Váša, L. (2024). Editing mesh sequences with varying connectivity. Computers & Graphics, 121, 103943.


DEPARTMENT OF

SCIENCE AND

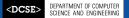

<DCSE>

Editing Triangle Mesh Sequences


Compression of TVMs

Procedure

- 1 track volume centers
- 2 compute canonical position of centers
 - Multidimensional scaling on maximal distances
- 3 map each surface into canonical space via mesh editing => canonical shape
- 4 map canonical shape to each frame
 - only center positions are required



Procedure

- 1 track volume centers
- 2 compute canonical position of centers
 - Multidimensional scaling on maximal distances
- 3 map each surface into canonical space via mesh editing => canonical shape
- 4 map canonical shape to each frame
 - only center positions are required

Disadvantages

- only works on short subsequences (GoF = 15)
- replaces original connectivity in each frame of a GoF

Procedure

- 1 track volume centers
- 2 compute canonical position of centers
 - Multidimensional scaling on maximal distances
- 3 map each surface into canonical space via mesh editing => canonical shape
- 4 map canonical shape to each frame
 - only center positions are required

Disadvantages

- only works on short subsequences (GoF = 15)
- replaces original connectivity in each frame of a GoF

Advantages

- beats per-frame approaches in RD-sense
 - tricky distortion evaluation because of change in connectivity
- invisible surface added in self-contact regions (within GoF)

Thank you for your attention! https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-tracking

Libor Váša lvasa@kiv.zcu.cz graphics.zcu.cz meshcompression.org

