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A frequently solved problem - lots of existing methods

Single-rate vs. Progressive

Geometry – lossy compression

Connectivity – lossless compression (otherwise simplification)

We compress geometry (and use Edgebreaker [Ross99] for the 
connectivity)

Different approaches

Traversal based methods (Parallelogram [TG98], Weighted 
Parallelogram [VB13], Angle-Analyzer [LAD02])

Laplacian based (High-Pass Quantization [SCT03], Error 
Propagation Control [VD18])

…

Compression of triangle meshes
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We predict the vertex position based on 

Previous vertices

Connectivity (is encoded first)

Difference between prediciton and actual position is encoded

Parallelogram

Weighted Parallelogram

Geometry prediction schemes
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General prediction scheme

Input: Connectivity + Already encoded/decoded part of geometry

Output: Next vertex prediction

Neural predictor
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Neural predictor

Multilayer perceptron

Input:

Geometry of base triangle

Vertex valences

Estimates of inner angles (just like Weighted Parallelogram)

Output:

Geometry of encoded triangle

Neural predictor
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Meshes can be of various sizes

How to normalize feature space

Invariance to rigid transformations + uniform scaling

Translation, rotation, uniform scale should not change the shape of 
the predicted triangle.

Angles

Inner angles – α, β, γ, δ

Dihedral angle - ω

Neural predictor – Data normalization
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More angles

Inner angles

Dihedral angle

2π / valence

Angle estimates

Angle between normals of neighboring triangles

Neural predictor – Data normalization
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We sampled ABC dataset [KMJ19]

Various shapes and tesselations

Traversal simulation (different parts of mesh were processed)

Different accuracy of estimates of inner angles

Neural predictor – Training
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L1 loss (inner angles + dihedral angle)

Different loss for validation (distance between predicted and 
actual position)

Neural predictor – Training

9



Neural predictor - Pipeline
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Maybe we could estimate prediction error

Corrections with different uncertainty are encoded within 
different context of arithmetic coder

Another neural network

Relative error (with respect to the area of base triangle)

Concordance Correlation Loss

Neural predictor – uncertainty estimation
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Comparison with the Weighted Parallelogram (state of the art)

Rate-Distortion ratio

Mechanistic metric - Mean Squared Error (MSE)

Perceptual metric - Dihedral Angle Mesh Error (DAME) [VR12]

Results
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Relative improvement wrt. WP

Results (MSE)
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Relative improvement wrt. WP

Results (DAME)
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Relative improvement wrt. WP

Results (DAME)
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In progress



Local features

Characterize the shape of the base triangle and its surroundings

Global features

Global mesh properties (curvature, tesselation, …)

Encoded at the beginning of the stream

Global mesh features
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Currently 7 handcrafted features

Variance of inner angles

Average dihedral angle

Variance of dihedral angles

Deviation from isoscelesness |α-β| (avg. + var.)

Deviation from parallelogram |α-δ|+|β-γ| (avg. + var.)

Global mesh features
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End-to-end learning

Still should be invariant to rigid transformations

Also to permutation of vertices and faces

Requires proper neural network architecture (MeshNet, PointNet?)

Global mesh features
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