

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

An RBF Muscle Model

Martin Červenka

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Introduction

- Problem definition
 - Position and shape of the muscle during the movement unknown, bones are defined
 - Muscle shape is approximated between the bones, to which the muscle is attached
 - Each model may be represented differently:
 - triangular surface mesh
 - models of fibres
 - Major behavioural requirements:
 - allow to calculate muscle force (for medical purposes)
 - preserve initial local shape (as much as possible)
 - preserve initial volume (...)
 - avoid collisions between entities (...)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Existing approaches

- Lines of action
- Via-points
- Wrapping obstacles
- Finite element methods
- Mass-spring systems
- Position-based dynamics

FACULTY OF APPLIED SCIENCESDEPARTMENTUNIVERSITYOF COMPUTER SCIENCEOF WEST BOHEMIAAND ENGINEERING

PBD: Position-based dynamics

- We work at this topic concurrently
- Produces deformed triangular mesh, preserving volume, shape, vertex distances and respects collisions
- Necessity of calculating and modifying all of the vertices

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Radial basis functions

- The muscle may be represented differently
 - implicit surface approximation
- Radial basis functions RBFs
 - weighted sum of individual RBFs
 - weights can be calculated
 - produces smooth approximation
 - if well selected (Gaussian), then infinitely differentiable

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Gaussian radial basis functions

- find suitable
 - number of RBFs (depends on desired precision)
 - shape parameter
 - centre points

$$f(\mathbf{x}) = \sum_{i=1}^{N} \lambda_i e^{-\alpha ||\mathbf{x} - \xi_i||_2^2}$$

 $\begin{array}{l} \alpha \text{ - shape parameter (global)} \\ \lambda_i \text{ - weight of the individual RBF} \\ \xi_i \text{ - centre of the individual RBF} \end{array}$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Radial basis functions

- Already used for the attachment estimation
 - The attachment is defined by a set of points on the boundary
 - The centre points = the boundary points
 - Task: find suitable shape parameters

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Radial basis functions in 3D

- Same idea as in 1D and 2D
- First step: select an isovalue
- 1 Gaussian RBF can be imagined as a "sphere"
- Multiple RBFs can merge those spheres together creating a "blob"
- Goal: create a muscle shape using just those "blobs"

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

The static muscle model

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Compression ratios

• RBF approximation of the Triangular meshes, MSE < 5%

Muscle	Triangular meshes			RBF approximation		Ratio
	Vertices	Triangles	Memory	Centres	Memory	-
Gluteus maximus	9878	19752	355560 B	184	7288 B	1:48
Gluteus medius	5313	10622	191220 B	50	2008 B	1:95
lliacus	6931	13858	249468 B	167	6688 B	1:37
Adductor brevis	8564	17124	308256 B	25	1008 B	1:305

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Dynamical model

- Preservation of the shape is done by curvature preservation
 - a. move the attached part of the muscle
 - b. to obtain the rest of the muscle:
 - recalculate the static model
 - do gradient descent to restore the curvature throughout the whole space
 - c. repeat
- For the gradient descent is required to:
 - a. find the Hessian matrix of the sum of all RBFs, representing the muscle
 - b. obtain its eigenvalues
 - c. get its mean => mean curvature
 - d. evaluate the gradient of the difference between the original and just calculated mean curvature

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Regularisation

- Force the RBF centres to be only inside/outside of the muscle
- Leading to "smoother" scalar field
 - reduce the amount of local extrema

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Conclusion

• The theoretical model of finding the centre points is as follows:

$$\nabla C_{fj} = \frac{8\alpha^2}{d} \int_{\mathbb{R}^d} \left(\kappa_f - \kappa_{f_{\text{init}}} \right) \sum_{i=1}^N g_i \left(\mathbf{x} \right) \left(x_j - \xi_{ij} \right) \left(2\alpha ||\mathbf{x} - \xi_i||_2^2 - 2 - d \right) d\mathbf{x}$$

• The work in progress is to implement the theoretical model into the muscle modelling framework (static model already finished, dynamic is in progress)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Thank you for your attention