Compression of sparse matrices

November 10th, 2023

Aljaž Jeromel, Borut Žalik

Institute of Computer Science
Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

Presentation contents

- Sparse matrices
- Proposed solution
- Christofides-Serdyukov algorithm
- Compression of chain codes
- Preliminary results
- Future work

Sparse matrices

- 2D arrays
- At least 2 / 3 of the cells are empty
- It is sensible to only encode non-empty cells
- How do we efficiently encode the coordinates?

Proposed solution - outline (1/3)

- Encode the path between points
- How to generate the path?
- Travelling salesman problem
- Complete solution is not feasible, approximation is needed
- Christofides-Serdyukov algorithm
- Use chain codes to encode the path
- Compress chain codes

Christofides-Serdyukov algorithm (1/3)

- TSP approximation algorithm
- Used terms:
- N - the number of vertices
- Minimum spanning tree: a connected graph with $\mathrm{N}-1$ edges
- Perfect matching: connecting the vertices by a set of edges, so that each vertex is connected to exactly one other vertex
- Eulerian circuit: a circular path on the graph that visits each edge exactly once
- Hamiltonian circuit: a circular path on the graph that visits each vertex exactly once

Christofides-Serdyukov algorithm (2/3)

- Create a minimum spanning tree
- Find a minimum-weight perfect matching on vertices of odd degree
- Combine the edges of MST and perfect matching
- Find an Eulerian circuit
- Transform the circuit into a Hamiltonian one

Christofides-Serdyukov algorithm (3/3)

Christofides-Serdyukov algorithm (3/3)

Christofides-Serdyukov algorithm (3/3)

Christofides-Serdyukov algorithm (3/3)

Christofides-Serdyukov algorithm (3/3)

Christofides-Serdyukov algorithm (3/3)

Proposed solution - details (2/3)

- Split the matrix into four quadrants
- Apply Christofides-Serdyukov algorithm on each quadrant separately
- Encode the TSP circuit in each quadrant using chain codes
- Concatenate the chain codes
- Compress the chain codes
- Compress the matrix data (not yet a part of this research)

Proposed solution - chain code traversal (2/3)

- Firstly, move along X-axis
- Then move along Y-axis
- F4 - point position is marked by outputting reverse of the previous direction ($0,0,0,0,3,3,3,3,1$)

- Relative F4 - only three codes used to encode movements, fourth code used for marking points
($0,0,0,0,1,0,0,0,3$)
- 30T, VCC - not tested yet

Compression of chain codes

- Testing different combinations of encoding
- String transformations:
- BWT
- MTF
- Entropy coding:
- Arithmetic coder
- Interpolative coder
- ANS coder
- RLE
- Binary coder (PAQ8L)

Preliminary results

- Best results are obtained with PAQ8L entropy coder
- The method has not yet been tested extensively
- Best preliminary results on a black and white image with 2% white pixels:
- Relative F4 + BWT + PAQ8L: 0,0479 bpp
- Relative F4 + BWT + MTF + PAQ8L: 0,0483 bpp
- Relative F4 + PAQ8L: 0,0494 bpp

Future work

- Efficiency evaluation on a larger dataset
- Test different chain codes
- Test another rasterizing method
- Evaluation of method with a higher number of dimensions
- Research compression of matrix/image values

