

COMPROMISE Unified Taxonomy of Features

Plzeň, 29th June 2023

David PODGORELEC

Faculty of Electrical Engineering and Computer Science

Institute of Computer Science

Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

COMPROMISE 2022 - 2025

COMPROMISE methodoly

- Universal data compression methodology:
 - Unique (lossless) framework for lossless, near-lossless and lossy data compression.
- with a unified taxonomy of features:
 - Data representation suitable for the domain-independent data compression and decompression.
- Validation in 4 pilot domains was promised:
 - Audio (1-D),
 - Images (2-D),
 - Biomedical signals (1-D, more channels),
 - Sparse voxel grids (3-D).
 - ... (e.g. Vector fields)

COMPROMISE methodoly

- New data compression paradigm, based on:
 - Features: prediction functions for estimating the associated patterns of <u>samples</u>.
 - No overlaps between the patterns of different features!
 - Predicted values are subtracted from the input samples → <u>residuals</u>, expected to be better compressible.
 - and restoration methods.
 - generalization of data expansion (decompression).
 - Identification of data that <u>may be omitted</u> during the compression, and then still be restored with a sufficient quality (lossless, nearlossless, lossy) <u>from the context</u>.

COMPROMISE methodoly

- 1.2 and 2.3 incorporate feature interpretation.
 - Domain-dependent features \leftrightarrow domain-independent.

COMPROMISE 2022 - 2025

Uncompressed I/O Data Streams

- I and I' are streams of samples with clearly defined order.
- Sample: individual data item (primitive) of I or I':
 - Discrete point on a line in 1D, pixel in 2D, voxel in 3D.
 - Location: unique explicit or implicit identification in the stream.
 - Value: $s_{i,j,k}$ or $s'_{i,j,k}$
 - Integer (or transformed to integer)
 - Floating point number
 - Multiple attributes (RBG, stereo audio)
 - Samples without values
 - <u>Non-numerical sample values</u> not considered
 - Inability to simply derive residuals.
 - Usually limited to lossless compression.

Uncompressed I/O Data Streams

- Complete regular grid:
 - $I \leftarrow \langle s_{i,j,k} \rangle$, $0 \le i < resX$, $0 \le j < resY$, $0 \le k < resZ$.
 - Similar for I'.
- Sparsely aranged samples:
 - huge amount of samples with unknown, redundant, trivially predictable, or irrelevant values (samples without values)
 - $\circ \ I \leftarrow \left\langle (i,j,k,s_{i,j,k}) \right\rangle, \ \left\{ (i,j,k) \right\} \subseteq [0,resX-1] \times [0,resY-1] \times [0,resZ-1]$

Features and Residuals

- A feature is a piece of information that possesses high discriminative/predictive value for human interpretation or machine processing of I.
 - Header: definition of presence and structure of other data.
 - Pattern: sequence of samples from I, affected by the feature.
 - Each pattern sample: a) represented by residual in R, b) omitted (the context provides all info for restoration), c) coded directly within the feature.
 - Prediction: unambiguous rules together with control data, which determine how the feature affects samples from Pattern.
 - Each feature stores sufficient information to expand or restore all the samples in its pattern independently from other features.
 - Patterns of different features do not overlap.

Feature.Pattern

- Segment: geometrically connected sequence of samples.
- Region: list of segments.
- Key samples: region of single-sample segments.
 - Depending on the feature type, key samples are written internally within *f*, while the others are encoded in R.
- Segments with two or more samples represented by:
 - Border: interval in 1D, chain codes in 2D or 3D.
 - Box: practical in a uniform grid or tree representation.
 - Key samples.
- Connectivity must be chosen to unambiguously define border and interior.
 - 4- and 8-connectivity in 2D,
 - 6-, 18- and 26- connectivity in 3D

Feature.Prediction

Classes of prediction functions:

- Interpolation
- Approximation
- Extrapolation
- Catalogue needed for detailed specifications of class members.
- Meaningfully applied for:
 - Samples without values
 - Segment described with key samples
 - Segment described with border/box
 - Border/box + additional key samples in the interior
 - Region
- Additional functionalities provided by masks, topology of segments, and relation trees.

Data headers

- Different layers
 - Default values (part of decoder/encoder, not I/O data)
 - Compressed file header
 - Header of the reduced stream of features F_r.
 - Feature header.
 - Header of the stream of residuals R (same level as F_r)
- Headers at lower layers overwrite settings from the higher ones.

Restoration

- In the interior of segments with the setting Interior Included = NO, or
- Outside of any feature pattern.
- Restoration method defined in default configuration or in compressed file header.
- Lossless compression: without errors
- Near lossless compression: errors controlled locally
- Lossy compression: errors controlled globally.

Digital audio example

Simple feature hierchy

- Blocks at higher level
- Each block has its own F_r and R.
- All feature patterns are intervals (1D segments) with border/box defined with pairs of local extrema.
- Four feature prediction functions
 - Line segment interpolation
 - Key values interpolation (no prediction or RLE)
 - Polyline approximation (uses the mask)
 - Average approximation.
- Basically lossless, but adaptable to other two modes by omitting or requantized.

Conclusion

- Something MUST HAVE, not necessarily MUST USE.
- Suitable for publication after shown that few more examples suit into the methodology.