Priority-based encoding of triangle mesh connectivity for a known geometry
(and beyond)

J. Dvořák, Z. Káčereková, P. Vaněček \& L. Váša

Department of Computer Science and Engineering
Faculty of Applied Sciences
University of West Bohemia
Pilsen, Czech Republic

May 19, 2023

Connectivity compression with known geometry

Geometry encoded first

- Temporal prediction
- Predictable spatial structure
- Multiple-rate compression

Conventional connectivity coding

Simple, does not require geometry information

Conventional connectivity coding

Simple, does not require geometry information

Causes reordering!

Permutation map: $\frac{1}{F} \log _{2}(V!)$ bpf

Distance-ranked coding

■ Marais et al. 2007
■ Fixed connectivity traversal through edges

Distance-ranked coding

■ Marais et al. 2007

- Fixed connectivity traversal through edges
- To encode a triangle:

1 Make a prediction P of tip vertex

Distance-ranked coding

■ Marais et al. 2007

- Fixed connectivity traversal through edges
- To encode a triangle:

1 Make a prediction P of tip vertex
2 Obtain a list of candidates

Distance-ranked coding

- Marais et al. 2007
- Fixed connectivity traversal through edges
- To encode a triangle:

1 Make a prediction P of tip vertex
2 Obtain a list of candidates
3 Sort candidate vertices by distance to P
4 Encode the rank of the tip vertex

Distance-ranked coding

- Marais et al. 2007
- Fixed connectivity traversal through edges
- To encode a triangle:

1 Make a prediction P of tip vertex
2 Obtain a list of candidates
3 Sort candidate vertices by distance to P
4 Encode the rank of the tip vertex

- Symbol $\mathbf{0}$ reserved for boundary

Our method

- Directly built upon Distance-ranked algorithm

Our method

■ Directly built upon Distance-ranked algorithm

- Fixed traversal \rightarrow Priority-driven traversal

Our method

■ Directly built upon Distance-ranked algorithm
■ Fixed traversal \rightarrow Priority-driven traversal

- Distance to prediction \rightarrow Candidate vertex quality

Our method

■ Directly built upon Distance-ranked algorithm
■ Fixed traversal \rightarrow Priority-driven traversal
■ Distance to prediction \rightarrow Candidate vertex quality

- Boundary edge prediction

Priority-driven traversal

Priority-driven traversal

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

- More feasible situation in future

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

- More feasible situation in future

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

- More feasible situation in future

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

- More feasible situation in future
- Exponential distribution expected
- exp-Golomb code + CABAC

Triangles where encoder most certain processed first

$$
p=q_{\max }-q_{\max 2}
$$

- More feasible situation in future
- Exponential distribution expected
- exp-Golomb code + CABAC
- Benefits when smaller values are encoded first

Fixed vs. Priority-driven traversal

Distance-ranked

Priority-driven

Fixed vs. Priority-driven traversal

Priority-driven

Candidate vertex quality

Candidate vertex quality

- Measure the feasibility of the potentially formed triangle

Candidate vertex quality

- Measure the feasibility of the potentially formed triangle

$$
\begin{gathered}
q=\theta-w_{1} \cdot \bar{d}+w_{2} \cdot \phi+w_{3} \cdot S \\
w_{1}, w_{2}, w_{3} \in \mathbb{R}_{>0}
\end{gathered}
$$

Candidate vertex quality

- Measure the feasibility of the potentially formed triangle

$$
\begin{gathered}
q=\theta-w_{1} \cdot \bar{d}+w_{2} \cdot \phi+w_{3} \cdot S \\
w_{1}, w_{2}, w_{3} \in \mathbb{R}_{>0}
\end{gathered}
$$

- Optimally - regular planar triangulation

Penalize long triangles

Best value: π

Distance from parallelogram prediction

Planarity, similar properties (area, edge length, inner angles)

$$
\bar{d}=\frac{d}{l_{\mathrm{avg}}}
$$

Best value: 0

Planarity

$$
\phi=\pi-\arccos \left(\mathbf{n}_{b} \cdot \mathbf{n}_{c}\right)
$$

Best value: π

Triangle similarity

Alternative to parallelogram rule without enforced planarity

$$
\begin{aligned}
r_{s} & =s_{b} / s_{v}, \quad r_{l}=l_{b} / l_{c} \\
r & =\left(r_{s}+r_{l}\right) / 2 \\
S & =-\left(\left|r-r_{s}\right|+\left|r-r_{l}\right|\right) / 2
\end{aligned}
$$

Best value: 0

Consistent list of candidates

To prevent ranking mismatch, the candidate list must be identical at both the encoder and decoder.

Consistent list of candidates

To prevent ranking mismatch, the candidate list must be identical at both the encoder and decoder.

■ Given a candidate c, we must be sure we have found all the vertices where $q \geq q_{c}$

Consistent list of candidates

To prevent ranking mismatch, the candidate list must be identical at both the encoder and decoder.

- Given a candidate c, we must be sure we have found all the vertices where $q \geq q_{c}$
- Simple for Distance-ranked method (radial search)

Consistent list of candidates

To prevent ranking mismatch, the candidate list must be identical at both the encoder and decoder.

■ Given a candidate c, we must be sure we have found all the vertices where $q \geq q_{c}$

- Simple for Distance-ranked method (radial search)
- q does not behave like distances

Consistent list of candidates

To prevent ranking mismatch, the candidate list must be identical at both the encoder and decoder.

- Given a candidate c, we must be sure we have found all the vertices where $q \geq q_{c}$
- Simple for Distance-ranked method (radial search)
- q does not behave like distances

Still can be evaluated by radial search, the search area can be deduced by plugging optimal values into the equation for evaluating q.

$$
q=\theta-w_{1} \cdot \bar{d}+w_{2} \cdot \phi+w_{3} \cdot S
$$

$$
q_{c}=\theta_{\min }-w_{1} \cdot 0+w_{2} \cdot \pi+w_{3} \cdot 0
$$

$$
\theta_{\min }=q_{c}-w_{2} \cdot \pi
$$

$$
q_{c}=\theta_{\min }-w_{1} \cdot 0+w_{2} \cdot \pi+w_{3} \cdot 0
$$

$$
\theta_{\min }=q_{c}-w_{2} \cdot \pi
$$

$$
q_{c}=\theta_{\min }-w_{1} \cdot 0+w_{2} \cdot \pi+w_{3} \cdot 0
$$

$$
\theta_{\min }=q_{c}-w_{2} \cdot \pi
$$

$$
q=\theta-w_{1} \cdot \bar{d}+w_{2} \cdot \phi+w_{3} \cdot S
$$

$$
q_{c}=\pi-w_{1} \cdot \bar{d}_{\max }+w_{2} \cdot \pi+w_{3} \cdot 0
$$

$$
d_{\max }=\frac{\left(w_{2} \cdot \pi+\pi-q_{c}\right) \cdot l_{\mathrm{avg}}}{w_{1}}
$$

All vertices with $q \geq q_{c}$ lie within $\mathcal{B}_{d} \cap \mathcal{B}_{\theta}$

All vertices with $q \geq q_{c}$ lie within $\mathcal{B}_{d} \cap \mathcal{B}_{\theta}$

All vertices with $q \geq q_{c}$ lie within $\mathcal{B}_{d} \cap \mathcal{B}_{\theta}$

All vertices with $q \geq q_{c}$ lie within $\mathcal{B}_{d} \cap \mathcal{B}_{\theta}$

Boundary edge prediction

Boundary edge prediction

Assumption

The boundary edge usually has no candidate vertex of high quality.

Boundary edge prediction

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate $q_{\text {max }}$ of each edge

Boundary edge prediction

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate $q_{\text {max }}$ of each edge
- Find q_{t} which best separates $q_{\text {max }}$ of inner/boundary edges

Boundary edge prediction

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate $q_{\text {max }}$ of each edge

■ Find q_{t} which best separates $q_{\text {max }}$ of inner/boundary edges

Boundary edge prediction

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate $q_{\text {max }}$ of each edge
- Find q_{t} which best separates $q_{\text {max }}$ of inner/boundary edges
- Predict boundary if $q_{\max }<q_{t}$

Prediction	Actual	Symbol
Inner	Inner	i
Boundary	Boundary	0
Boundary	Inner	$i+1$
Inner	Boundary	$\max (i)+1$

Experimental results

Main experiment

Main experiment

Main experiment

Main experiment

Proposed $\quad 1.112 \mathrm{bpf}$

Distance-ranked 1.343 bpf $H=1.317$

$\begin{array}{ll}0.152 \mathrm{bpf} & 1.050 \mathrm{bpf} \\ H=0.171 & H=1.195\end{array}$
$0.264 \mathrm{bpf} \quad 2.261 \mathrm{bpf}$
$H=0.232$

$$
\begin{aligned}
& 0.181 \mathrm{bpf} \\
& H=0.282
\end{aligned}
$$

$$
\begin{aligned}
& 0.331 \mathrm{bpf} \\
& H=0.381
\end{aligned}
$$

$$
\begin{aligned}
& 0.448 \mathrm{bpf} \\
& H=0.521
\end{aligned}
$$

$$
\begin{aligned}
& 0.708 \mathrm{bpf} \\
& H=0.693
\end{aligned}
$$

0.919 bpf
$H=1.079$

1.523 bpf
$H=1.552$

The Distance-ranked algorithm does not achieve a consistently lower data rate than H.

Main experiment

Mesh compression

Combined with PC codec [Merry et al. 2006] vs. Weighted parallelogram [Váša-Brunnett 2013]

Limitations \& Future Work

PAC-MAN configuration ©...

Optimal parameters

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.

■ Global trend towards a region of satisfactory rates

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

Optimal parameters

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.
■ Global trend towards a region of satisfactory rates

- Noisy with lots of local optima

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

Optimal parameters

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.
■ Global trend towards a region of satisfactory rates

- Noisy with lots of local optima

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

- Exhaustive search

Optimal parameters

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.
■ Global trend towards a region of satisfactory rates

- Noisy with lots of local optima

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

- Exhaustive search
- Simulated annealing

Optimal parameters

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.

■ Global trend towards a region of satisfactory rates

- Noisy with lots of local optima

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

- Exhaustive search
- Simulated annealing
- Still no guarantee of finding the global minimum

Difficult to find optimal w_{1}, w_{2}, w_{3} for a certain model.

- Global trend towards a region of satisfactory rates

■ Noisy with lots of local optima

$$
b p f\left(w_{1}, w_{2}, w_{3}\right)
$$

■ Exhaustive search

- Simulated annealing
- Still no guarantee of finding the global minimum

In experiments:
■ Default parameters vs. Fine-tuned for each dataset

- Estimated on a subset
- Default parameters still better than Distance-ranked
- No significant improvement for irregular data

Connection to mesh properties

- Obtain fine-tuned weights for various models

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
- Mean and Gaussian curvatures
- Vertex degrees
- Inner angles
- Edge lengths

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
- Mean and Gaussian curvatures
- Vertex degrees
- Inner angles
- Edge lengths
- Investigate possible connections

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
- Mean and Gaussian curvatures
- Vertex degrees
- Inner angles
- Edge lengths
- Investigate possible connections

So complex, there might not be any.

Local-frame-based optimization

- Local frame optimization
- Maximize tip vertex quality
- Minimize quality of all other vertices

Local-frame-based optimization

- Local frame optimization
- Maximize tip vertex quality
- Minimize quality of all other vertices

1 Optimize over all gates and encode weights
2 Adaptive optimization

Local-frame-based optimization

- Local frame optimization
- Maximize tip vertex quality
- Minimize quality of all other vertices

1 Optimize over all gates and encode weights
2 Adaptive optimization

Does not consider all the aspects (e.g., priority).

Quality function for CAD models

Model-based compression of Time-varying meshes

https://gitlab.kiv.zcu.cz/jdvorak/priority-based-connectivity-coding

Jan Dvořák
jdvorak@kiv.zcu.cz

