

Priority-based encoding of triangle mesh connectivity for a known geometry

(and beyond)

J. Dvořák, Z. Káčereková, P. Vaněček & L. Váša

Department of Computer Science and Engineering Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic

May 19, 2023

Connectivity compression with known geometry

Geometry encoded first

- Temporal prediction
- Predictable spatial structure
- Multiple-rate compression

Conventional connectivity coding

Simple, does not require geometry information

Conventional connectivity coding

Simple, does not require geometry information

Causes reordering!

Permutation map: $\frac{1}{F} \log_2{(V!)}$ bpf

Distance-ranked coding

Marais et al. 2007

Fixed connectivity traversal through edges

4 / 29

- Marais et al. 2007
- Fixed connectivity traversal through edges
- To encode a triangle:
 - **1** Make a prediction P of tip vertex

Marais et al. 2007

- Fixed connectivity traversal through edges
- To encode a triangle:
 - **1** Make a prediction P of tip vertex
 - 2 Obtain a list of candidates

- Marais et al. 2007
- Fixed connectivity traversal through edges
- To encode a triangle:
 - **1** Make a prediction P of tip vertex
 - 2 Obtain a list of candidates
 - **3** Sort candidate vertices by distance to P
 - 4 Encode the rank of the tip vertex

- Marais et al. 2007
- Fixed connectivity traversal through edges
- To encode a triangle:
 - 1 Make a prediction P of tip vertex
 - 2 Obtain a list of candidates
 - 3 Sort candidate vertices by distance to P
 - 4 Encode the rank of the tip vertex
- Symbol **0** reserved for boundary

Directly built upon Distance-ranked algorithm

- Directly built upon Distance-ranked algorithm
- Fixed traversal \rightarrow Priority-driven traversal

- Directly built upon Distance-ranked algorithm
- \blacksquare Fixed traversal \rightarrow Priority-driven traversal
- Distance to prediction \rightarrow Candidate vertex quality

Our method

- Directly built upon Distance-ranked algorithm
- \blacksquare Fixed traversal \rightarrow Priority-driven traversal
- \blacksquare Distance to prediction \rightarrow Candidate vertex quality
- Boundary edge prediction

Triangles where encoder most certain processed first

 $p = q_{\max} - q_{\max 2}$

Triangles where encoder most certain processed first

 $p = q_{\max} - q_{\max}^2$

More feasible situation in future

Triangles where encoder most certain processed first

 $p = q_{\rm max} - q_{\rm max2}$

More feasible situation in future

Triangles where encoder most certain processed first

 $p = q_{\max} - q_{\max 2}$

More feasible situation in future

Triangles where encoder most certain processed first

 $p = q_{\max} - q_{\max}^2$

- More feasible situation in future
- Exponential distribution expected
- $\blacksquare exp-Golomb code + CABAC$

Triangles where encoder most certain processed first

 $p = q_{\max} - q_{\max}^2$

- More feasible situation in future
- Exponential distribution expected
- $\blacksquare exp-Golomb code + CABAC$
- Benefits when smaller values are encoded first

Fixed vs. Priority-driven traversal

Distance-ranked

Priority-driven

Fixed vs. Priority-driven traversal

)

Distance-ranked

Priority-driven

1

Fixed vs. Priority-driven traversal

Distance-ranked

Priority-driven

Candidate vertex quality

Candidate vertex quality

Measure the feasibility of the potentially formed triangle

Measure the feasibility of the potentially formed triangle

$$q = \theta - w_1 \cdot \bar{d} + w_2 \cdot \phi + w_3 \cdot S$$
$$w_1, w_2, w_3 \in \mathbb{R}_{>0}$$

Measure the feasibility of the potentially formed triangle

$$q = \theta - w_1 \cdot \bar{d} + w_2 \cdot \phi + w_3 \cdot S$$
$$w_1, w_2, w_3 \in \mathbb{R}_{>0}$$

Optimally - regular planar triangulation

Inner angle

Penalize long triangles

Best value: π

Distance from parallelogram prediction

Planarity, similar properties (area, edge length, inner angles)

$$\bar{d} = \frac{d}{l_{\text{avg}}}$$

Best value: 0

Planarity

$$\phi = \pi - \arccos(\mathbf{n}_b \cdot \mathbf{n}_c)$$

Best value: π

Triangle similarity

Alternative to parallelogram rule without enforced planarity

$$\begin{split} r_s &= s_b/s_v, \quad r_l = l_b/l_c \\ r &= (r_s + r_l)/2 \\ S &= -(|r - r_s| + |r - r_l|)/2. \end{split}$$

Best value: 0

• Given a candidate c, we must be sure we have found all the vertices where $q \ge q_c$

- Given a candidate c, we must be sure we have found all the vertices where $q \ge q_c$
- Simple for Distance-ranked method (radial search)

- Given a candidate c, we must be sure we have found all the vertices where $q \ge q_c$
- Simple for Distance-ranked method (radial search)
- q does not behave like distances

- Given a candidate c, we must be sure we have found all the vertices where $q \ge q_c$
- Simple for Distance-ranked method (radial search)
- q does not behave like distances

Still can be evaluated by radial search, the search area can be deduced by plugging optimal values into the equation for evaluating q.

$$q = \theta - w_1 \cdot \bar{d} + w_2 \cdot \phi + w_3 \cdot S$$

$$q_c = \theta_{\min} - w_1 \cdot 0 + w_2 \cdot \pi + w_3 \cdot 0$$

$$\theta_{\min} = q_c - w_2 \cdot \pi$$

$$q_c = \theta_{\min} - w_1 \cdot 0 + w_2 \cdot \pi + w_3 \cdot 0$$

$$\theta_{\min} = q_c - w_2 \cdot \pi$$

$$q_c = \theta_{\min} - w_1 \cdot 0 + w_2 \cdot \pi + w_3 \cdot 0$$

$$\theta_{\min} = q_c - w_2 \cdot \pi$$

$$q = \theta - w_1 \cdot \overline{\mathbf{d}} + w_2 \cdot \phi + w_3 \cdot S$$

$$q_c = \pi - w_1 \cdot \overline{d}_{\max} + w_2 \cdot \pi + w_3 \cdot 0$$

$$d_{\max} = \frac{(w_2 \cdot \pi + \pi - q_c) \cdot l_{\text{avg}}}{w_1}$$

All vertices with $q \ge q_c$ lie within $\mathcal{B}_d \cap \mathcal{B}_{ heta}$

All vertices with $q \ge q_c$ lie within $\mathcal{B}_d \cap \mathcal{B}_{\theta}$

All vertices with $q \ge q_c$ lie within $\mathcal{B}_d \cap \mathcal{B}_{\theta}$

All vertices with $q \geq q_c$ lie within $\mathcal{B}_d \cap \mathcal{B}_{\theta}$

Assumption

The boundary edge usually has no candidate vertex of high quality.

Assumption

The boundary edge usually has no candidate vertex of high quality.

• Evaluate q_{\max} of each edge

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate q_{\max} of each edge
- Find *q_t* which best separates *q*_{max} of inner/boundary edges

FACILITY OF APPLIED SCIENCE

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate q_{\max} of each edge
- Find *q_t* which best separates *q*_{max} of inner/boundary edges

FACULTY OF APPLIED SCIENCE: UNIVERSITY OF WEST BOHEMIA

Assumption

The boundary edge usually has no candidate vertex of high quality.

- Evaluate q_{\max} of each edge
- Find *q_t* which best separates *q*_{max} of inner/boundary edges
- Predict boundary if $q_{\max} < q_t$

Prediction	Actual	Symbol
Inner	Inner	i
Boundary	Boundary	0
Boundary	Inner	i + 1
Inner	Boundary	$\max\left(i\right)+1$

Experimental results

# meshes	80	546	10000	10000	458	8133

Proposed	1.112 bpf	0.152 bpf	1.050 bpf	$0.181 \mathrm{~bpf}$	$0.448 \ \mathrm{bpf}$	$0.919 \mathrm{bpf}$
	H = 1.247	H = 0.171	H = 1.195	H = 0.282	H = 0.521	H = 1.079

The Distance-ranked algorithm does not achieve a consistently lower data rate than H.

Improvement	17.17%	42.62%	53.54%	45.26%	36.68%	39.66%
-------------	--------	--------	--------	--------	--------	--------

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA

Combined with PC codec [Merry et al. 2006] vs. Weighted parallelogram [Váša-Brunnett 2013]

Limitations & Future Work

PAC-MAN configuration <····

PAC-MAN configuration <----

PAC-MAN configuration <----

PAC-MAN configuration <----

Difficult to find optimal w_1, w_2, w_3 for a certain model.

Global trend towards a region of satisfactory rates

Difficult to find optimal w_1, w_2, w_3 for a certain model.

- Global trend towards a region of satisfactory rates
- Noisy with lots of local optima

Difficult to find optimal w_1, w_2, w_3 for a certain model.

- Global trend towards a region of satisfactory rates
- Noisy with lots of local optima
- Exhaustive search

Optimal parameters

Difficult to find optimal w_1, w_2, w_3 for a certain model.

- Global trend towards a region of satisfactory rates
- Noisy with lots of local optima
- Exhaustive search
- Simulated annealing

Optimal parameters

Difficult to find optimal w_1, w_2, w_3 for a certain model.

- Global trend towards a region of satisfactory rates
- Noisy with lots of local optima
- Exhaustive search
- Simulated annealing
- Still no guarantee of finding the global minimum

Optimal parameters

Difficult to find optimal w_1, w_2, w_3 for a certain model.

- Global trend towards a region of satisfactory rates
- Noisy with lots of local optima
- Exhaustive search
- Simulated annealing
- Still no guarantee of finding the global minimum

In experiments:

- Default parameters vs. Fine-tuned for each dataset
- Estimated on a subset
- Default parameters still better than Distance-ranked
- No significant improvement for irregular data

Obtain fine-tuned weights for various models

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
 - Mean and Gaussian curvatures
 - Vertex degrees
 - Inner angles
 - Edge lengths
 - ...

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
 - Mean and Gaussian curvatures
 - Vertex degrees
 - Inner angles
 - Edge lengths
 - • •
- Investigate possible connections

Connection to mesh properties

- Obtain fine-tuned weights for various models
- Compare mesh properties
 - Mean and Gaussian curvatures
 - Vertex degrees
 - Inner angles
 - Edge lengths
 - • •
- Investigate possible connections

So complex, there might not be any.

Local-frame-based optimization

Local frame optimization

- Maximize tip vertex quality
- Minimize quality of all other vertices

Local-frame-based optimization

Local frame optimization

- Maximize tip vertex quality
- Minimize quality of all other vertices
- 1 Optimize over all gates and encode weights
- 2 Adaptive optimization

Local-frame-based optimization

Local frame optimization

- Maximize tip vertex quality
- Minimize quality of all other vertices
- 1 Optimize over all gates and encode weights

2 Adaptive optimization

Does not consider all the aspects (e.g., priority).

Quality function for CAD models

Model-based compression of Time-varying meshes

FACULTY OF APPLIED SCIENCES UNIVERSITY OF WEST BOHEMIA Thank you

https://gitlab.kiv.zcu.cz/jdvorak/priority-based-connectivity-coding

Jan Dvořák jdvorak@kiv.zcu.cz