Radial basis functions
 interpolation and approximation

Martin Červenka

University of West Bohemia
$10^{\text {th }}$ of February, 2023

Introduction

- n-D interpolation and approximation technique
- Estimates function value by a sum of radial functions
- Example: sum of two red RBFs interpolates blue curve

Usage, 1D example

- Usage:
- 1D signals
- 2D images
- 3D shapes
- Mainly 1D signals and 2D functions in my existing research
- Generalisation into higher dimensions possible

- Function: $\sin 15 x^{2}+5 x$
- 1000 uniform samples
- 21 RBF centres (compression approx. 1:23)
- Centres: extrema, inflexion points, on border, ...

2D example $1 / 3$

Original data: 136×184 grid

2D example $2 / 3$

Thin plate spline, 25×25 uniform samples (approx. 1:13)

2D example $3 / 3$

Error rates (abs. difference), max. relative error: 13\%

Sample 136x184; RBF: TPS, unitorm 25×25

Publications

Cervenka, M., Skala, V.:
Behavioral Study of Various Radial Basis Functions for Approximation and Interpolation Purposes,
IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI 2020,
pp.135-140, ISBN 978-1-7281-314, Slovakia, (2020) (Scopus)
UT WoS: 000589772600026, EID: 2-s2.0-85087093548, OBD: 43929006
https://doi.org/10.1109/SAMI48414.2020.9108712
[PDF]

Cervenka, M., Skala, V.:
Conditionality Analysis of the Radial Basis Function Matrix,
ICCSA 2020 proceedings, part II, LNCS, pp. 30-43
Springer, (2020)
UT WoS: X, EID: 2-s2.0-85093112881, OBD: 43932697
https://doi.org/10.1007/978-3-030-58802-1 3
[PDF]

Cervenka, M., Smolik, M., Skala, V.:
A New Strategy for Scattered Data Approximation Using Radial Basis Functions Representing Points of Inflection,
Computational Science and lts Application, ICSSA 2019 proceedings,
Part I, LNCS 11619, pp.322-226, ISSN 0302-9743, ISBN 978-3-030-24288-6, Springer, (2019)
UT WoS: 000661318700024, EID: 2-s2.0-85069157052, OBD: 43926678
https://doi.org/10.1007/978-3-030-24289-3 24
[PDF]

Skala, V., Cervenka, M.:
Novel RBF Approximation Method Based on Geometrical Properties for Signal Processing with a New RBF Function: Experimental Comparison, Informatics 2019. IEEE proceedings.
pp.357-362, ISBN 978-1-7281-3178-8, Poprad, Slovakia, (2019)
UT WoS: 000610452900074, EID: 2-s2.0-85087090327, OBD: 43929007
https://doi.org/10.1109/Informatics47936.2019.9119276
[PDF]

Modified Radial Basis Functions Approximation Respecting Data Local Features,
Modified Radial Basis Functions
pp.445-449, ISBN 978-1-7281-3178-8, Poprad, Slovakia, (2019)
UT WoS: 000610452900015, EID: 2-s2.0-8508762067, OBD: 43928987
https://doi.org/10.1109/Informatics47936.2019.9119330
[PDF]

Skala, V., Karim, S.. Cervenka, M.:
Finding Points of Importance for Radial Basis Function Approximation of Large Scattered Data,
Computational Science - ICCS 2020 ,
Part VI, LNCS 12142, pp. 239-250, Springer, (2020)
UT WoS: X. EID: 2-s2.0-85087274721, OBD: 43932925
https://doi.org/10.1007/978-3-030-50433-5_19
[PDF]

Publication 1

Cervenka, M., Smolik, M., Skala, V.: A New Strategy for Scattered Data Approximation Using Radial Basis Functions Representing Points of Inflection, Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.322-226, ISSN 0302-9743, ISBN 978-3-030-24288-6, Springer, (2019)

Fig. 9. The RBF approximation of $2 \frac{1}{2} D$ function (14). The total number of RBF centers is 244 (red marks).

Publication 2

Cervenka, M., Skala, V.: Conditionality Analysis of the Radial Basis Function Matrix, ICCSA 2020 proceedings, part II, LNCS, pp. 30-43, Springer, (2020)

Matrix conditionality depending on number of RBFs and shape parameter

Combinations of RBFs and shape parameters, where the solution will be stable (valleys) and unstable (hills), using uniform sampling and Gaussian RBF.

Summary

+ Simple generalisation to higher dimensions
+ Can reach high data reduction ratio
+ Automatic smoothing property
+ Variety of RBFs to choose from
- Cannot reconstruct sharp edges
- Problems at the boundaries
- Equation system conditionality problems
- Finding suitable centre points (shape parameters)

Homework (1/6)

- Gluteus maximus muscle
- Triangular mesh \rightarrow RBF representation
- Data reduction (from 9878 vertices + connectivity)
- Features: centre points coordinates + shape parameters
- Residuals: differences between mesh and isosufrace (WIP)

Homework (2/6)
50 RBFs (200 parameters), Jaccard index: 94.651\% (100000 samples)

Homework (3/6)
100 RBFs (400 parameters), Jaccard index: 95.95\% (100000 samples)

Homework (4/6)
200 RBFs (800 parameters), Jaccard index: 97.28% (100000 samples)

Homework (5/6)
500 RBFs (2000 parameters), Jaccard index: 97.945\% (100000 samples)

Homework (6/6)

1000 RBFs (4000 parameters), Jaccard index: 98.783\% (100000 samples)

Thank you for your attention

