Radial basis functions interpolation and approximation

Martin Červenka

University of West Bohemia

10th of February, 2023

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 - のへで 1/17

Introduction

- n-D interpolation and approximation technique
- Estimates function value by a sum of radial functions
- Example: sum of two red RBFs interpolates blue curve

Usage, 1D example

- Usage:
 - 1D signals
 - 2D images
 - 3D shapes

Mainly 1D signals and 2D functions in my existing research

Generalisation into higher dimensions possible

- Function: $\sin 15x^2 + 5x$
- 1000 uniform samples
- 21 RBF centres (compression approx. 1:23)
- Centres: extrema, inflexion points, on border, ...

2D example 1/3

Original data: 136x184 grid

・ロト ・ (日)・ ・ ヨト ・ ヨー ・ ク へ ・ 4/17

2D example 2/3

Thin plate spline, 25x25 uniform samples (approx. 1:13)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ ∽ 𝔅 ↔ 5/17

2D example 3/3

Error rates (abs. difference), max. relative error: 13%

Publications

Cervenka, M., Skala, V.:

Behavioral Study of Various Radial Basis Functions for Approximation and Interpolation Purposes, IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI 2020, pp.135-140, ISBN 978-1-7281-314, Slovakia, (2020) (Scopus) UT Wes: 000589772600026, EU: 2-242, 0-5807030544, OBD: 43929006 https://doi.org/10.1109/SAMI48414.2020.9108712 [PDF]

Cervenka, M., Skala, V .:

Conditionality Analysis of the Radial Basis Function Matrix, ICSA 2020 proceedings, part II, LNCS, pp. 30-43, Springer, (2020) UT WoS: X_ED: 2-s2.0-s6005112881, OBD: 43932697 https://doi.org/10.1007/978-3-030-58802-1_3 IPDF1

Cervenka, M., Smolik, M., Skala, V.:

A New Strategy for Scattered Data Approximation Using Radial Basis Functions Representing Points of Inflection, Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.322-226, ISSN 0302-9743, ISBN 978-3-030-24288-6, Springer, (2019) UT WoS: 00063138700024, ED: 2-32.0-5809157052, OBD: 43926678 https://doi.org/10.1007/978-3-030-24289-3_24 [PDF]

Skala, V., Cervenka, M.;

 Novei RBF Approximation Method Based on Geometrical Properties for Signal Processing with a New RBF Function: Experimental Comparison, Informatics 2019. IEEE proceedings.

 pp. 337-382, ISBN 978-1-7281-3178-8, Poprad, Slovakia, (2019)

 UT Wes: Oxo61045200074, EU:: 2-82.0-85087000327, OBC - 43929007

 https://doi.org/10.1109/Informatics47936.2019.9119276

 PDF |

Vasta, J., Skala, V., Smolik, M., Cervenka, M.: Modfied Radial Basis Functions Approximation Respecting Data Local Features, informatics 2019. IEEE proceedings. pp.464-449, ISBN 978-3-7281-3178-8, Poprad, Slovakia, (2019) University 2016; 2017 - 24, 24, 2609 (2007) (2007) (2007) (2007) University 2017 (2007) (200

Skala, V., Karim, S., Cervenka, M.: Finding Points of Importance for Radial Basis Function Approximation of Large Scattered Data, Computational Science - ICCS 2020, PartVI, ILNCS 12142, pp. 239-250, Springer, (2020) UT Wols, X. EID: 2-s2:0-65007274721, CBD C4395-219 UT Wols, X. EID: 2-s2:0-65007274721, CBD C4395-219 UT PDF - Internet Internet Part Application Carbon Carbon Carbon (DDF) - Internet Distribution Carbon Ca

Publication 1

Cervenka, M., Smolik, M., Skala, V.: A New Strategy for Scattered Data Approximation Using Radial Basis Functions Representing Points of Inflection, Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.322-226, ISSN 0302-9743, ISBN 978-3-030-24288-6, Springer, (2019)

Fig. 9. The RBF approximation of $2\frac{1}{2}D$ function (14). The total number of RBF centers is 244 (red marks).

Publication 2

Cervenka, M., Skala, V.: **Conditionality Analysis of the Radial Basis Function Matrix**, ICCSA 2020 proceedings, part II, LNCS, pp. 30-43, Springer, (2020)

Combinations of RBFs and shape parameters, where the solution will be stable (valleys) and unstable (hills), using uniform sampling and Gaussian RBF.

Summary

- + Simple generalisation to higher dimensions
- + Can reach high data reduction ratio
- + Automatic smoothing property
- + Variety of RBFs to choose from

- Cannot reconstruct sharp edges
- Problems at the boundaries
- Equation system conditionality problems
- Finding suitable centre points (shape parameters)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/17

Homework (1/6)

- Gluteus maximus muscle
- Triangular mesh \rightarrow RBF representation
- Data reduction (from 9878 vertices + connectivity)
- Features: centre points coordinates + shape parameters
- Residuals: differences between mesh and isosufrace (WIP)

<□ > < @ > < E > < E > E の < C 11/17

Homework (2/6) 50 RBFs (200 parameters), Jaccard index: 94.651% (100000 samples)

Homework (3/6) 100 RBFs (400 parameters), Jaccard index: 95.95% (100000 samples)

Homework (4/6) 200 RBFs (800 parameters), Jaccard index: 97.28% (100000

samples)

Homework (5/6)

500 RBFs (2000 parameters), Jaccard index: 97.945% (100000 samples)

Homework (6/6)

1000 RBFs (4000 parameters), Jaccard index: 98.783% (100000 samples)

Thank you for your attention

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • • • ● ● 17/17