

Compromise

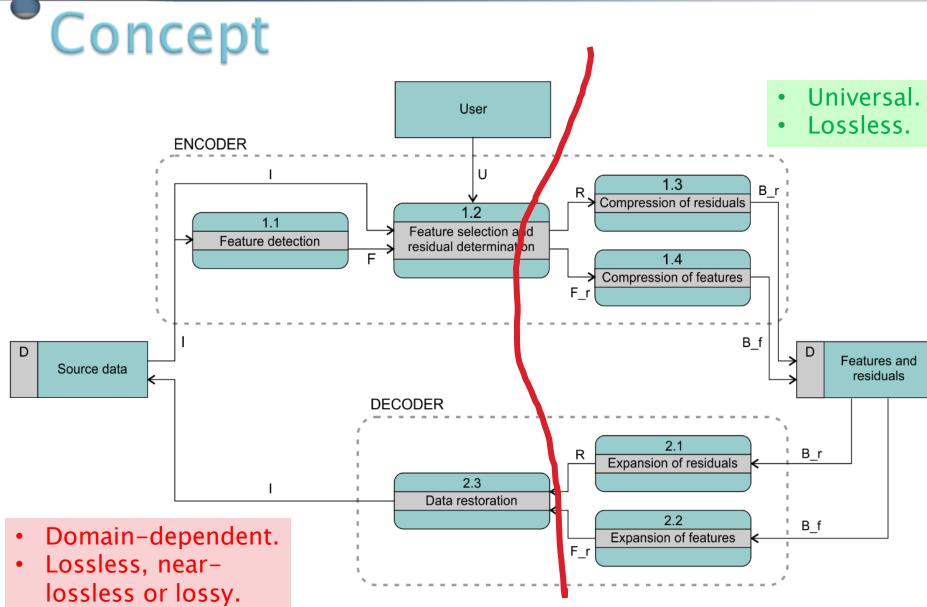
ULTIMEDIA AND ARTIFICIAL INTELLIGENCE

Data <u>compr</u>ession paradigm based on <u>omi</u>tting <u>s</u>elf-<u>e</u>vident information

Maribor, 16.01.2023

GeMA

David PODGORELEC & GeMMA Team


Faculty of Electrical Engineering and Computer Science

Institute of Computer Science

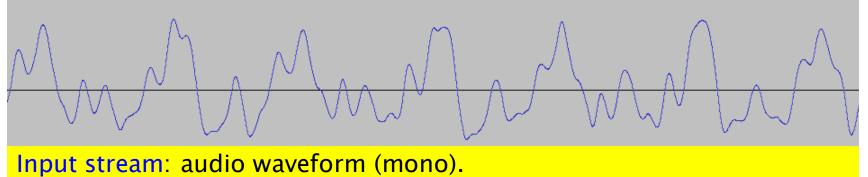
Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

GeMA LABORATORY FOR GEOMETRIC MODELING AND MULTIMEDIA ALGORITHMS

How to start

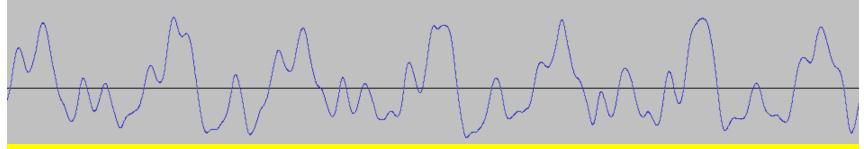
STEP 1: Choose your data domain.

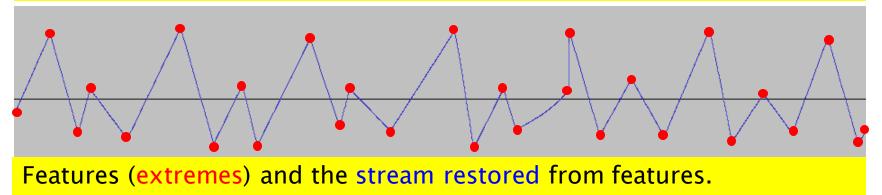
- 1. Raster images.
- 2. Digital audio.
- 3. Biomedical signals (promissed to be covered by UWB).
- 4. Sparse voxel grids.
- 5. Other ideas also acceptable to prove the concept.
- Within the chosen domain(s), think about reference state-of-theart results (e.g. PNG, JPEG-LS, JP2 for lossless images, FLAC, MPEG-4 ALS for lossless digital audio,...).
- Near lossless extension also needed. Also ability for lossy mode, but we do not compete with lossy methods results!
- Near lossless = lossy with locally controlled errors.

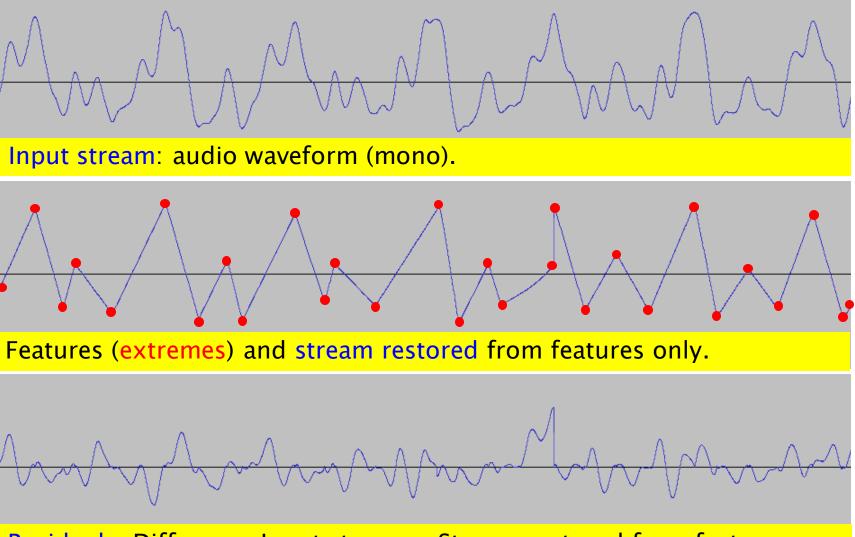

How to start

- STEP 2: Think about features to be extracted from your input data streams.
 - Domain-dependent feature repertoires till M3.
 - Universal feature taxonomy till M6.
 - Think about universal feature classes while designing domaindependent features already. *Does my domain-dependent feature make sense in some other pilot domain as well*?
 - Examples of features that could possibly be generalized : extreme, sequence, border, pattern, region of interest, rhythm (repetition, trend, ...), symmetry, self-similarity... Use your imagination here!

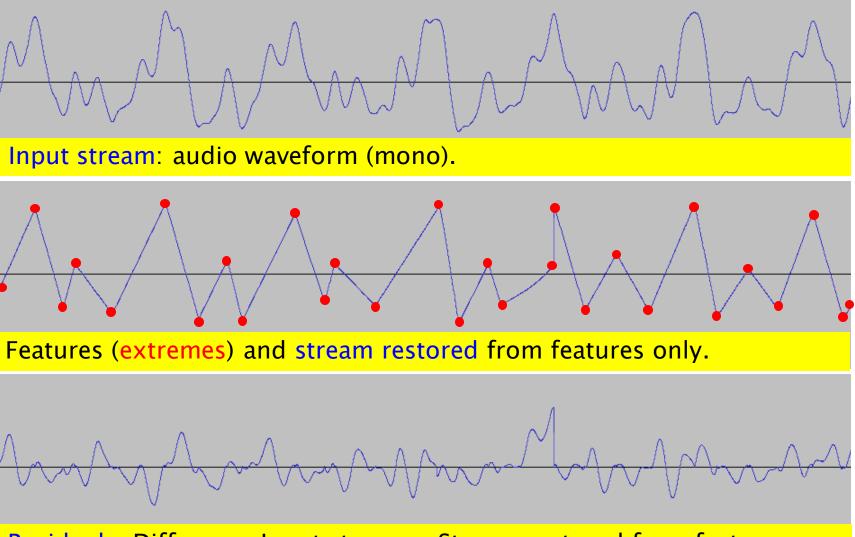
FGeMA LABORATORY FOR GEOSPATIAL MODELLING, MULTIMEDIA AND ARTIFICIAL INTELLIGENCE


STEP 3: feature detection

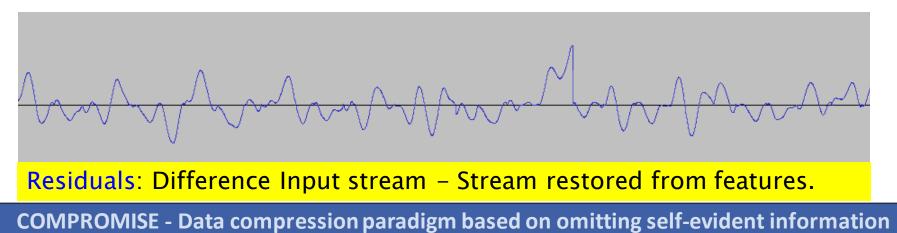

Cience A LABORATORY FOR GEOMETRIC MODELING AND MULTIMEDIA ALGORITHMS


STEP 3: feature detection

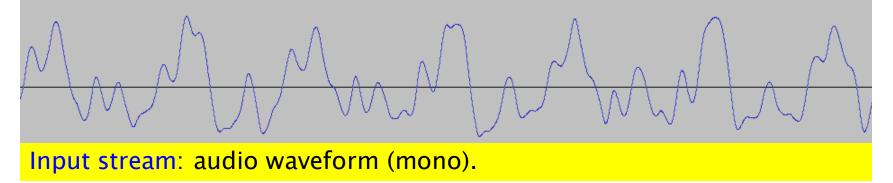
Input stream: audio waveform (mono)

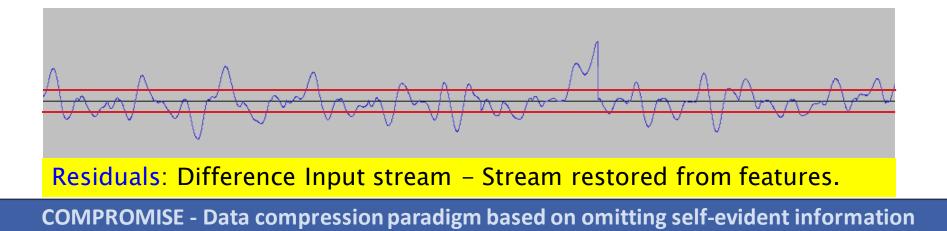


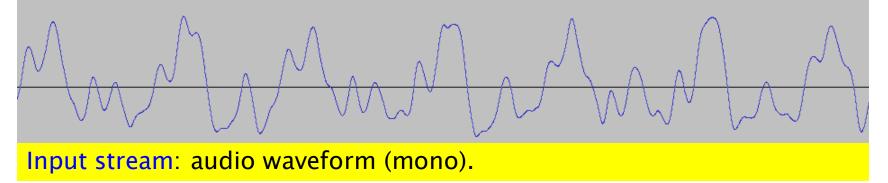
Residuals: Difference Input stream – Stream restored from features.

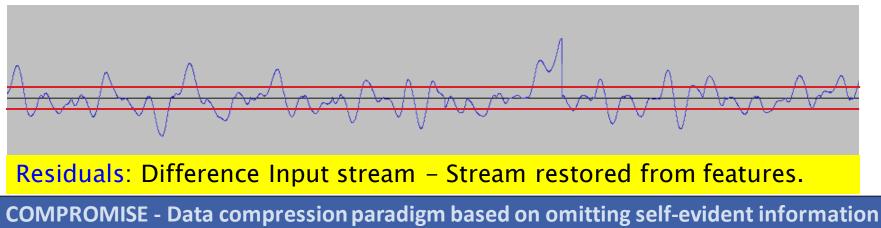


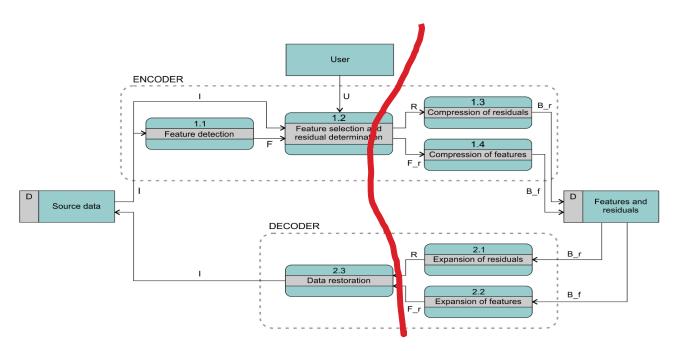
Residuals: Difference Input stream – Stream restored from features.



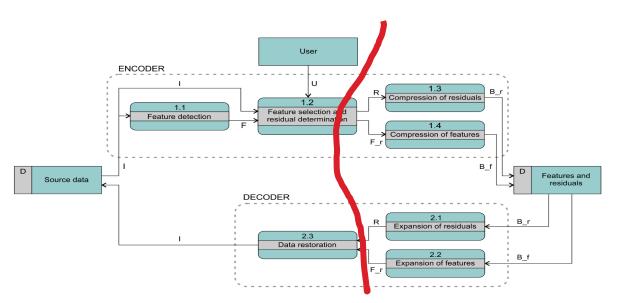

- Features: expectedly below 10% of output data.
- Residuals are more critical.
 - FLAC compresses the input stream a bit more successfully than the residuals. And we still need 10% for features!




- Iterative optimization process.
- E.g. constrain local errors (amplitudes of residuals), refresh features in critical areas, compute new residuals...



- Perform optimization on the domain-dependent level.
- Lossless, near lossles and lossy separation made here.
- "Translate" features and residuals to the unified level.
- Further optimize at unified level (maybe).



- Red line: feature interpretation.
 - \rightarrow translate domain-dependent features to unified taxonomy.
 - \rightarrow no further changes on residual stream expected.
 - \leftarrow reverse from the above.

Step 5...: beyond the red line

- Study distributions of residuals and individual unified feature types and choose optimal lossless compression method.
- Ensembles and pipelines of different lossless data transformation and compression methods also acceptable.
- Can be and must be partially done in parallel with 1.1 (and then in parallel with 1.2 and 2.3) – see WP3 and WP4 in workplan.

Workplan

WP T Work package/task title	Start	End	1	2	3 4	5	6	7	8	9 1	0 11	12	13	14	15 16	17	18	19 2	0 21	22 2	3 24	4 25	26 2	7 28	29	30 31	1 32	33	34 3	5 36
1 Project management	1	36																												
1 Administrative and financial project management	1	36																												
2 Quality assurance and risk mitigation	1	36																												
3 Legal, data and knowledge management	1	36																												
2 Definitions and unified taxonomy of features	1	6																												
1 Generation of domain-dependent feature repertoires	1	3																												
2 Definition of feature descriptions and development of methods for their interpretation	2	6																												
3 Specification of domain-independent feature taxonomy	3	6																												
3 Feature detection, compression, and data restoration	4	21																												
1 Feature detection	4	12																												
2 Data restoration and residual determination	7	20																												
3 Lossless compression of features and residuals	10	21																												
4 Feature selection and optimised residual determination	10	30																												
1 Feature selection	10	27																												
2 Integration of feature selection and residual determination	19	30																												
5 Component integration and hypothesis testing	26	36																												
1 Adaptation of SOTA methods for comparison	26	31																												
2 Component integration	28	32																												
3 Analysis of results, iterative improvements of methodology, and hypothesis testing	30	36																												
6 Dissemination, exploitation, and communication	1	36																												
1 Dissemination, exploitation, and communication strategy	1	36																												
2 Dissemination activities	3	36																												
		MS1													MS2 MS3															
MS1 Proof of concept		MS2 The	e first o	oper	rationa	l prot	otype	base	ed on	redur	ndant	featu	re set	t								MS	3 Optim	ized s	ysten	n based	d on s	select	ed feat	ures

Deliverables

- > At least 3 papers in international open access journals,
- at least 6 conference papers,
- (above papers not inked to induvidual WPs. Domaindependent results also count.)
- organisation of 2 dedicated presentation events,
- 1 patent application,
- eventual additional requirements from GAČR(?),
- Website and a profile on at least 1 social network (after M6)
 - https://gemma.feri.um.si/projects/slovene-national-research-projects/j2-4458-data-compression-paradigm-based-on-omitting-self-evidentinformation/eng/
- ongoing results at the end of individual WPs (plans, reports, instructions, software, test datasets...).