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How to start

» STEP 1: Choose your data domain.

1.

bk W

Rasterimages.

Digital audio.

Biomedical signals (promissed to be covered by UWB).
Sparse voxel grids.

Other ideas also acceptable to prove the concept.

o Within the chosen domain(s), think about reference state-of-the-

art results (e.g. PNG, JPEG-LS, JP2 for lossless images, FLAC,
MPEG-4 ALS for lossless digital audio,...).

> Near lossless extension also needed. Also ability for lossy mode,

but we do not compete with lossy methods results!

> Near lossless = lossy with locally controlled errors.
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How to start

» STEP 2: Think about features to be extracted from your

input data streams.
> Domain-dependent feature repertoires till M3.
o Universal feature taxonomy till M6.

> Think about universal feature classes while designing domain-
dependent features already. Does my domain-dependent feature
make sense in some other pilot domain as well?

o Examples of features that could possibly be generalized : extreme,
sequence, border, pattern, region of interest, rhythm (repetition,
trend, ...), symmetry, self-similarity... Use your imagination here!
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STEP 3: feature detection

Input stream: audio waveform (mono).
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STEP 3: feature detectio
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Input stream: audio waveform (mono)
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Features (extremes) and the stream restored from features.
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Input stream: audio waveform (mono).
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Features (extremes) and stream restored from features only.
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Residuals: Difference Input stream - Stream restored from features.
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Input stream: audio waveform (mono).
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Features (extremes) and stream restored from features only.
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Residuals: Difference Input stream - Stream restored from features.
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Input stream: audio waveform (mono).

» Features: expectedly below 10% of output data.

» Residuals are more critical.

o FLAC compresses the input stream a bit more successfully than
the residuals. And we still need 10% for features!
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Residuals: Difference Input stream - Stream restored from features.

COMPROMIISE - Data compression paradigm based on omitting self-evident information



ra
Faculty of Electrical Engineering
and Computer Soence

RV, UV VT UV TAWAERWAWENRY
Input stream: audio waveform (mono).

» |terative optimization process.

» E.g. constrain local errors (amplitudes of residuals),
refresh features in critical areas, compute new residuals...
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Residuals: Difference Input stream - Stream restored from features.
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Input stream: audio waveform (mono).

» Perform optimization on the domain-dependent level.
» Lossless, near lossles and lossy separation made here.
» Translate” features and residuals to the unified level.

» Further optimize at unified level (maybe).

A A A N /\/n A

T [ FEA A Al h T A= LY |
L AN KA My i I R AW L N A A AN ST
v wJ ~ I, [ ¥ ¥ S 7 ~

Residuals: Difference Input stream - Stream restored from features.
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» Red line: feature interpretation.

o = translate domain-dependent features to unified taxonomy.
> = no further changes on residual stream expected.
o & reverse from the above.
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Step 5...: beyond the red line

» Study distributions of residuals and individual unified feature
types and choose optimal lossless compression method.

» Ensembles and pipelines of different lossless data
transformation and compression methods also acceptable.

» Can be and must be partially done in parallel with 1.1 (and then
in parallel with 1.2 and 2.3) —see WP3 and WP4 in workplan.
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WP T Work packageltask title Stat End 1 2 3 4 5 6 7 8 9 10 11 12{13 14 15 16 17 18 19 20 21|22 23 24 25 26 27 28 29 30|31 32 33 34 35 36
1 Project management 1 36
1 |Administrative and financial project management 1 36
2 |Quality assurance and risk miigation 1 36
3 |Legal, data and knowledge management 1 36
2 Definitions and unified taxonomy of features 1 6
1|Generation of domain-dependent feature repertoires 1 3
Definition of feature descriptions and development of 5 6

methods for their interpretation

(5]

Specification of domain-independent feature taxonomy 6

3
3 Feature detection, compression, and data restoration 4 2
4 1

1
Feature detection 2

—

(=]

Data restoration and residual determination 7 20

3 |Lossless compression of features and residuals 10 21
4 Feature selection and optimised residual determination 10 30 _

10 27

Feature selection

—

2 |Integration of feature selection and residual determination 19 30
5 Component integration and hypothesis testing 26 36 _
1 |Adaptation of SOTA methods for comparison 26 3
2 |Component integration 28 32
Analysis of results, iterative improvements of methodology, 2 %
and hypothesis testing
6 Dissemination, exploitation, and communication 1 36
1 |Dissemination, exploitation, and communication strategy 1 36
2 |Dissemination actvites 3 36
MS1 Ms2 Ms3
MS1 Proaf of concept MS2 The first operational prototype based on redundant feature set MS3 Optimized system based on selected features
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Deliverable
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W

At least 3 papers in international open access journals,
at least 6 conference papers,

(above papers not inked to induvidual WPs. Domain-
dependent results also count.)

organisation of 2 dedicated presentation events,
1 patent application,
eventual additional requirements from GACR(?),

Website and a profile on at least 1 social network (after M6)

o https://gemma.feri.um.si/projects/slovene-national-research-projects/j2-
4458-data-compression-paradigm-based-on-omitting-self-evident-
information/eng/

ongoing results at the end of individual WPs (plans, reports,

instructions, software, test datasets...).
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