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High-level COMPROMISE feature set (version V3.0) 
 

1. Introduction 
 

 
Fig. 1. Concept of the COMPROMISE data compression methodology 

 
The main result, planned in COMPROMISE, is a universal data compression methodology with a 
unified taxonomy of features.  

• The universal methodology means transformation of the input data stream into a 
representation, which enables utilization of a unique lossless data compression framework in 
the lossless, near-lossless and lossy compression mode. Here the latter two mean the lossless 
entropy coding preceeded with a near-lossless or lossy data preparation, respectively. 

• The unified taxonomy of features means the design of a data representation, suitable for the 
domain-independent data compression and decompression. 

 
The COMPROMISE methodology will be realised through the development of a new data 
compression paradigm, based on integration of features and restoration methods.  

• The features introduce prediction functions for estimating the associated patterns of data 
primitives (samples). We do not assume overlaps between the patterns of different features. 
The predicted values are subtracted from the original input values to obtain the so-called 
residuals, expected to be better compressible than the originals.   

• The restoration is a generalization of the traditional data expansion (decompression) method. 
The idea is to identify the data that may be omitted during the compression, and then still be 
restored with a sufficient quality (lossless, near-lossless, lossy) from the context. 

 
The methodology will be validated in at least four pilot domains: digital audio, biomedical signals 
(both 1D), images (2D), and sparse voxel grids (3D). All three compression modes, lossy, near-lossless 
and lossless, are not necessarily equally important and need not be treated equally in all domains. 
For biomedical data, the lossless mode will absolutely dominate, but similarly, for example, when 
compressing vector fields, we will be primarily interested in the lossy mode. The methodology 
should therefore not constrain any existing data compression method by forcing adaptation to the 
proposed paradigm. In fact, the latter is designed to be so general that, in the extreme case, it will 
also allow the representation with features only or with residuals only. 
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2. Uncompressed input and output data streams 
 
The data of interest in COMPROMISE is a limited (finite) stream of samples, organised in a clearly 
defined order.  
 
A sample is an individual data item (data primitive) of the input stream 𝐼 (Fig. 1) of the data 
compression pipeline, or of the output stream 𝐼′ (Fig. 1) of the data expansion pipeline. The sample 
is, for example, a discrete point on a line in 1D, a pixel in 2D, or a voxel in 3D. It is specified by the 
location and value. 

• The sample location identifies the sample within the stream uniquely, i.e. an array index 𝑖 in 1D, 
a pair of matrix indices (𝑖, 𝑗) in 2D, or a triple of indices (𝑖, 𝑗, 𝑘) in 3D. It can be given explicitly for 
each individual sample or implicitly through a topology, established by a uniform or hierarchical 
subdivision of the input stream.    

• The sample value (data attribute, e.g. the amplitude, heigth, etc.) is a sequence of bits at the 
sample location, structured according to the data type specification. 
▪ Integers in the positional notation are highly convenient for compression. If transformed to 

non-negative values, either by adding the absolute value of the minimum or by considering 
the sign separately, residuals with multiple leading zeros, that may be simply omitted, are 
derived often. 

▪ Floating point numbers in the positional notation can be considered in the same way as 
integers. However, the scientific notation, e.g. IEEE 754, appears slightly more complex. Here 
the replacement of an input value by a residual potentially lowers the exponent and 
shortens the mantissa by shifting its non-zero digits to the left. However, the lengths of 
both, the exponent and the mantissa must be stored, which usually requires more bits than 
the length of a number encoded positionally. 

▪ Multiple attributes, e.g. RGB colour components or a pair of stereo audio samples, may also 
be attached to a single data stream sample or, alternatively, streams of individual 
components may be considered as separate data streams. 

▪ Samples without values are also possible. This makes sense if we are interested into a 
geometric shape only, i.e. which samples do represent the region of interest. This 
corresponds to the complete-grid data stream of Boolean values 0 and 1, where the non-
shape samples (e.g. 0-values) are omitted.  

Non-numerical sample values are currently not considered in COMPROMISE because of inability 
to simply derive a »residual« as the difference between the input value (symbol) and its 
prediction. Although the symbols can be numerically encoded e.g. by ASCII codes, it is hard to 
judge whether, for example, ‘B’ is better predicted by ‘A’ or ‘C’ than by ‘V’ or ‘W’? The residuals 
should thus be designed on other principles, e.g. probabilies of good and bad guesses 
(predictions), which is, however, hardly compatible with the COMPROMISE paradigm. 
Furthermore, text, DNA and other symbol-based sequences usually require lossless compression 
only, which deviates from the idea of a universal data compression methodology. 

 
The encoder’s input stream 𝑰 is a domain-dependent array of samples 𝑠𝑖,𝑗,𝑘. Similarly, the decoder's 

output stream 𝑰′ is an array of samples 𝑠𝑖,𝑗,𝑘
′ . The data representation must be flexible enough to 

support both, a complete regular grid or a sparse arrangement of samples. Furthermore, it must be 
useful in 1D, 2D and 3D data domains at least.  

 

2.1 Representation of a complete regular grid 
 
A complete regular grid contains all the samples of a limited interval of an 1D signal, all the pixels of 
a raster image, or all the voxels of a limited voxel space.  𝐼 is thus: 
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𝐼 ← ⟨𝑠𝑖,𝑗,𝑘⟩, 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍.  (1) 

 
Here 𝑠𝑖,𝑗,𝑘 is the value of the sample at the location (𝑖, 𝑗, 𝑘) in 𝐼, while 𝑟𝑒𝑠𝑋, 𝑟𝑒𝑠𝑌, and 𝑟𝑒𝑠𝑍 

represent resolutions (the number of samples) in 3D Cartesian coordinate directions. In 1D domain, 
where 𝑟𝑒𝑠𝑌 = 𝑟𝑒𝑠𝑍 = 1, we may omitt indices 𝑗 and 𝑘 (both 0 all the time).  

 
𝐼 ← ⟨𝑠0, 𝑠1, … ,  𝑠𝑟𝑒𝑠𝑋−1⟩.     (2) 

 
Similarly, index 𝑘 = 0 may be omitted in 2D domain, where 𝑟𝑒𝑠𝑍 = 1. 

 

𝐼 ← [

𝑠0,0 ⋯ 𝑠𝑟𝑒𝑠𝑋−1,0 

⋮ ⋱ ⋮
𝑠0,𝑟𝑒𝑠𝑌−1 ⋯ 𝑠𝑟𝑒𝑠𝑋−1,𝑟𝑒𝑠𝑌−1

] .    (3) 

 
The decoder's output stream 𝐼′ is: 
 

𝐼′ ← ⟨𝑠𝑖,𝑗,𝑘
′ ⟩, 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍.  (4) 

 
Equations (2) and (3), orginally used for the input stream 𝐼, can be adapted trivially to 1D and 2D 
simplifications of 𝐼′.   
 
In the case of multiple attributes, samples of 𝐼 and 𝐼′ consist of 𝑐 > 1 components 

⟨ 𝑠𝑖,𝑗,𝑘
0 , … , 𝑠𝑖,𝑗,𝑘

𝑐−1 ⟩ and ⟨ 𝑠𝑖,𝑗,𝑘
′0 , … , 𝑠𝑖,𝑗,𝑘

′𝑐−1 ⟩, respectively. 

 

2.2   Representation of sparsely arranged samples 
 
A complete regular grid has a well-known advantage that, when the samples are stored sequentially 
in the raster scanning order, the locations of individual samples need not be stored. On the other 
hand, there are quite frequent situations when a huge amount of samples has unknown (not 
explicitly acquired), redundant (repeated in long runs or predictable trivially in some other manner), 
or irrelevant values (see the »Samples without values« paragraph in Section 2). In such cases, it 
often makes more sense to omit »non-interesting« samples, although some extra bits might be 
spent to store the locations of the interesting ones. The definitions (1) and (4) of 𝐼 and 𝐼′ should, 
thus, be replaced by (5) and (6): 
 

𝐼 ← ⟨(𝑖, 𝑗, 𝑘, 𝑠𝑖,𝑗,𝑘)⟩,    {(𝑖, 𝑗, 𝑘)} ⊆ [0, 𝑟𝑒𝑠𝑋 − 1] × [0, 𝑟𝑒𝑠𝑌 − 1] × [0, 𝑟𝑒𝑠𝑍 − 1],     (5) 

 

𝐼′ ← ⟨(𝑖, 𝑗, 𝑘, 𝑠𝑖,𝑗,𝑘
′ )⟩,    {(𝑖, 𝑗, 𝑘)} ⊆ [0, 𝑟𝑒𝑠𝑋 − 1] × [0, 𝑟𝑒𝑠𝑌 − 1] × [0, 𝑟𝑒𝑠𝑍 − 1].     (6) 

 
 

3 Features and residuals 
 
A feature is a piece of information that possesses high discriminative/predictive value for human 
interpretation or machine processing (e.g., computer vision, classification) of an input data stream 𝐼.  
 
As stressed in the Introduction, each feature 𝑓 introduces some common rule/rules to predict the 
values of an internally (within 𝑓) specified pattern of samples from 𝐼. The predictions are then 
subtracted from the samples’ values from 𝐼 to obtain so-called residuals, which are expected to be 
better compressible than the original samples. The residuals are stored in the stream of residuals 𝑹 
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(see Fig. 1), but some may also be omitted under certain conditions and then restored from the 
context automatically. 
 
The desription of the feature 𝒇 consists of: 
a) 𝒇. 𝒉𝒆𝒂𝒅𝒆𝒓: definitions of presence and structure of data in other two components. 
b) 𝒇. 𝒑𝒂𝒕𝒕𝒆𝒓𝒏: sequence of samples from 𝐼, affected by the feature. Note that we do not need the 

sample values 𝑠𝑖,𝑗,𝑘 here, but only their indices (𝑖, 𝑗, 𝑘). Before the compression, each sample of 

𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is either: 
a) represented by the residual in 𝑅, obtained through utilization of 𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 
b) omitted, because the context provides all information for satisfactory restoration, or  
c) coded directly in 𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑑𝑎𝑡𝑎. 

c) 𝒇. 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏: unambiguous rules together with control data, which determine how the 
feature affects samples from 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛. The most interesting component is 
𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑎𝑚𝑝𝑙𝑒 𝑠), which is used to compute the predicted (interpolated, 
approximated, or otherwise estimated) value for each sample 𝑠 ∈ 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛. The residual 
𝑟𝑒𝑠(𝑠) = 𝑠 − 𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠) is then computed and, if necessary, stored into 𝑅. 

 
Two streams of features are handled in COMPROMISE (Fig. 1): 

• The feature stream 𝑭 is the domain-dependent output stream of the feature detection module. 
The associated patterns may overlap. The overlaps can be so strong that individual features are 
redundant. This is best detected and resolved before the data compression step. Therefore, the 
subsequent step of feature selection reduces the stream 𝐹. Besides this, each feature type, used 
in the domain-dependent strem 𝐹, is provided with a feature interpretation function, which 
translates a feature of such type into the corresponding domain-independent representation of 
the uniform feature taxonomy. 𝐹 and the feature interpretation functions are not considered 
further in this document. 

• The reduced feature stream 𝑭𝒓, obtained by feature selection, has the following properties. 
1. Each sample 𝑠 of the input stream 𝐼, represented by  𝑟𝑒𝑠(𝑠) ∈ 𝑅, must be addressed by at 

least one feature. 
 

𝑠 ∈ 𝐼 ∧  𝑟𝑒𝑠(𝑠) ∈ 𝑅 ⟹ 𝑠 ∈ ⋃ 𝑓𝑖 . 𝑝𝑎𝑡𝑡𝑒𝑟𝑛

𝑓𝑖∈𝐹𝑟

                                              (7) 

 
2. 𝑓𝑖 . 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 may additionally contain samples, which are not represented by residuals in 𝑅, 

but omitted and restored, or stored directly in the control block of  𝑓𝑖 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 
3. An individual feature contains sufficient information to expand and/or restore all the 

samples in its pattern independently from other features. 
4. The above statements imply that each sample 𝑠 of the input stream 𝐼 is addressed by at 

most one feature.  
 

𝑓𝑖 . 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∩ 𝑓𝑗 . 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = ∅, 𝑖 ≠ 𝑗                                               (8) 

3.1 f.pattern 
 
The feature component 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 stores a sequence of samples (their locations i.e. indices) from 𝐼, 
which are addressed by 𝑓. As already stated in Section 2, samples’ location may be given explicitly 
for each individual sample or implicitly through a topology. We distinguish three types of pattern: 

• Segment: geometrically connected sequence of samples. 

• Region: geometrically disconnected sequence of samples. List of segments. 

• Key samples: region of segments with a single sample each. Local extrema of sample values are 
often chosen as the key samples. 
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A segment with ‖𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛‖ > 1 is represented by: 
a) border:  interval in 1D, one or more loops in 2D, one or more shells in 3D. The interval is simply a 

pair of key samples, while chain codes are typically used in 2D or 3D. 
b) box: interval in 1D, rectangle in 2D, or block in 3D. Two vertices are needed for representation. 

In many cases, they can be derived from the topology indirectly, as the box often represents a 
cell in a uniform grid or a node in a uniform hierarchical subdivision (binary tree, quadtree, 

octree). This information is obtained from the 𝐹𝑟 stream header.  
c) Key samples. 

 

3.2 Data headers 
 
A broad general COMPROMISE methodology is designed to compress data of different types 
(integer, floating point numbers, multiple numerical attributes, or only the location information 
without associated data values) in all three data compression modes (lossless, near-lossless, lossy) in 
various data domains in 1D, 2D and 3D. This places a requirement on the data compression pipeline  
to have a rich and flexible repertoire of settings, which must also be available to the decoder. The 
default values of these settings are given in the default configuration file, which may be overwritten 
by the data grouped into four types of data headers: 
a) File header: highest hierarchical level of all headers. The settings defined here are applicable to 

all lower levels, if not overwritten there.  

b) 𝑭𝒓 stream header: settings valid for all features in 𝐹𝑟 . If some   
c) 𝒇. 𝒉𝒆𝒂𝒅𝒆𝒓: settings applicable only for 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and 𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. They overwrite the 

settings from 𝐹𝑟 stream header and from the default configuration file.     

d) 𝑹 stream header: settings valid for all residuals in 𝑅. 
 
Table 1. Examples of settings in different level headers 
Setting Value Defined in 

Type of all headers Binary or some markup language First bit of file header 

Dimension 1D, 2D or 3D Default (3D); File header 

Topology Uniform, Hierarchical, None (sparse data) Default (Uniform); File header 

Data compression BASC, Interpolative, … Default (3D); File header; Fr (all feature 
types or separately for individual types); R 

Compression mode Lossless, Near-lossless, Lossy Default (Lossless); File header 

Compression parameters  Method-dependent Default (3D); File header; Fr (all feature 
types or separately for individual types); R 

Data value type Integer, Float, Multiple (n) ints, Multiple (n) 
floats, None 

Default (Integer); R; Fr 

Data value coding Direct value (PCM), Direct (DPCM), Residual 
(PCM), Residual (DPCM) 

Default (Direct value PCM for features, 
Residual PCM for residuals); R; Fr 

Feature repertoire Indices from the catalogue (to be done). Default; File header 

Restoration method From the repertoire of prediction functions Default, File header 

…   

 
Speciall attention must be paid to settings of 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 of individual features. They are expected to 

be usually defined in 𝑓. ℎ𝑒𝑎𝑑𝑒𝑟, but can also be inherited from 𝐹𝑟 stream header or even from the 
default configuration. Furthermore, the Topology setting and end eventual Data value type = None 
from Table 1 must be meaningfuly applied here, to treat the residuals and other data correctly. The 
pattern settins are given in Table 2. 
 
Table 2. Settings of 𝑓. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 of an individual feature f 
Setting Value Comment 

Pattern type Segment, Region, Key samples  

Region settings 0 – unique for whole region, 1 – separate 
for each individual segment in region 

For Region only 
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Segment description Border, Box, Key samples, Border/box + 
additional key samples in the interior 

For each segment or inherited 

Chain code method  For segments with more than 1 sample in 2D or 3D, 
when Segment desription = Border 

Box coordinates  When Segment desription = Box 

Border values None, Key samples, Interpolation 
(+number and locations of samples) 

when Segment desription = Border or Box 

Interior included  Yes/No when Segment desription = Border or Box 

List of segments  For Pattern type = Region 
List of key samples  Contains locations and/or values when necessary 

 
There are quite some combinations of settings possible obviously, and some are expected to be used 
more frequently than others, so the introduction of some optional configuration files makes sense.  
 

3.3 f.prediction 
 
A feature introduces the relations between the sample locations and/or between the sample values 
in the pattern, enabling compact pattern encoding. Of course, different relations exist and, 
consequently, different feature types must be introduced. However, they all follow the same 
behavioural pattern according to the type of the accociated pattern of samples. 
 
a) Samples without values. When only a geometric shape is important, i.e. which samples do 

represent the region of interest, the whole job is done by describing the pattern. There is 
nothing to predict. 

b) Segment described with key samples. When the values of all the samples of the pattern are 
given, there is again nothing to predict. 

c) Segment described with border/box. The values of the border samples may be given explicitly 
with key samples completely. However, it is more usual that only few samples on the border 
have values attached directly, while the others are obtained by prediction. The prediction is also 
used to compute values of the interior pixels (if Interior included is set to Yes). The predicted 
values are compared with the original ones to compute the residuals, which are either stored or 
omitted then. 

d) Border/box + additional key samples in the interior. The same strategy as above is used, but 
the prediction is enhanced by additional key samples. 

e) Regions. Each segment with clearly identified border is considered according to c) or d), while 
those without explicitly defined border are handled by b). 

 
The prediction mentioned in c) is determined in 𝑓. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, and can belong to one of 
the following function types. 

• Interpolation function – it interpolates key samples and/or values on the segment border/box. 
The goal is to find such interpolation that the residuals of the estimated sample values are 
“optimal” (with the lowest entropy already or best compressible to achieve the lowest entropy). 

• Approximation function – it approximates samples of a given region in an “optimal” way (best-
fitting curve/surface). Key samples and or the segment border/box are used to define the control 
points to be fitted.  

• Extrapolation function – it predicts the value of the observed patterns by using the values from 
some predefined neighbourhood pattern.  
 

Concrete members of each of these function classes are still to be defined and parameterised. The 
result will be the catalogue of feature specifications. For example, linear interpolation in one of the 
coordinate directions represents the most basic interpolation function. Radial basis functions (RBA) 
are enother example of interpolation (approximation?). The majority of known predictors from 
domain-dependent lossless algorithms (e.g. FLAC, JBIG…) are examples of the extrapolation 
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functions. The semantic meaning of each function is less important and usually too limited for use in 
a unified feature taxonomy, although the terms as gradient, trend, etc. may also be considered. 
 
Use of masks can further improve the estimations obtained by the interpolation, approximation or 
extrapolation. The mask is a predefined pattern of a few sample locations in a considered segment, 
aimed to locally attract the graph of the considered prediction function. At each mask location, a 
limited repertoire of sample values is offered and the closest to the concrete sample value is chosen 
for calculation of the residual. Hovever, it is much more important, that the mask locations also 
decrease the residuals in adjacent locations within some local neighbourhood. As there is a low 
number of mask locations and also a low number of predefined values at these locations, the mask 
can be compactly represented by a few bits only. 
   
Feature hierarchy must also be provided at least in the most basic form. From practical (e.g. 
visualization or playback) reasons, the input stream is often subdivided into a uniform grid of blocks 
or hierchicaly into 2, 4 or 8 uniform blocks at each hierarchical level. In each block, however, a 
»classical« segmentation into segments, regions and key samples might be useful. Relation trees 
represent a step forward by exposing hierarchical relationships among features/patterns (not only 
uniform blocks) at lower levels. In this context, rhythm may be defined, for example, to denote a 
sequence of segments, which are somehow (uniformly or non-uniformly) arranged in the considered 
spatial domain (1D, 2D, 3D…), such that the sample values within prescribed tolerances expose 
repetition, self-similarity, symmetry, trend, etc.  
 

3.4 Data restoration 
 
As stressed already, the restoration is a generalization of the traditional data expansion 
(decompression) method. The idea is to identify the data that may be omitted during the 
compression, and then still be restored with a sufficient quality (lossless, near-lossless, lossy) from 
the context. The samples to be restored can be produced in two ways: 
a) in the interior of segments with the setting Interior included = No. If some sample from such a 

segment is represented by the residuum preferably, then it may be defined as a key sample. 
b) Outside of any feature pattern. Equations (7) and (8) only require that all the samples, 

represented by residuals in R, must be present in at least (exactly indeed) one of the feature 
patterns, which are not allowed to overlap. However, the samples from I without the 
corresponding residuals in R need not be addressed by any feature. 

 
The restoration method is defined in the default configuration file or in the compressed file header. 
In the case a), the f.prediction.function should be used instead, if defined. 
 

 

4 Lossless, near-lossless and lossy data compression 
 
In all three data compression modes, lossless entropy coding is used. This means that all errors, 
typical for lossy and near-lossless mode, are produced in pre-processing, i.e. feature detection, 
feature selection, and residual determination processes. Data restoration is an evident source of 
errors, but not the only one. Compression parameters (defined in the default configuration file or in 
the compressed file header) also define, which residuals may be further omitted (and then 
interpolated from the remaining ones) or they can introduce requantization with fewer bits for an 
individual residual.  
 
In the lossless data compression mode, 𝐼′ = 𝐼, i.e. 
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𝑠𝑖,𝑗,𝑘
′ = 𝑠𝑖,𝑗,𝑘,   0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍.  (9) 

 
In the near-lossless mode, the error is locally controlled, i.e. 
 

|𝑠𝑖,𝑗,𝑘 − 𝑠𝑖,𝑗,𝑘
′ | < 𝜀, 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍,  (10) 

 
where 𝜀 is a user-defined local error threshold. 
 
In the lossy mode, the error is globally controlled, i.e. 
 

1

𝑛
∑|𝑠𝑖,𝑗,𝑘 − 𝑠𝑖,𝑗,𝑘

′ |

𝑛−1

𝑖=0

< 𝜀, 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍, (11) 

  
where 𝜀 is a user-defined cummulative error threshold, and 𝑛 = 𝑟𝑒𝑠𝑋 ∙ 𝑟𝑒𝑠𝑌 ∙ 𝑟𝑒𝑠𝑍. 
 

In the case of multiple attributes, the difference |𝑠𝑖,𝑗,𝑘 − 𝑠𝑖,𝑗,𝑘
′ | in Eq. (8) and Eq. (9) can be computed 

as the Euclidean distance (Eq. 12), when all ℎ components have nearly the same mean values 𝐸 and 
nearly the same standard deviations 𝑆𝐷 In both, 𝐼 and 𝐼′. Otherwise, the weighted Euclidean 

distance (Eq. 13) may be used, where 𝑤ℎ is the inverse variance (
1

𝑆𝐷ℎ
2) of the ℎ-th component of the 

samples in both, 𝐼 and 𝐼′.  
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′ | = √∑((ℎ)𝑠𝑖,𝑗,𝑘−(ℎ)𝑠𝑖,𝑗,𝑘
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                                          (12) 

   

|𝑠𝑖,𝑗,𝑘 − 𝑠𝑖,𝑗,𝑘
′ | = √∑ 𝑤ℎ ∙ ((ℎ)𝑠𝑖,𝑗,𝑘−(ℎ)𝑠𝑖,𝑗,𝑘

′ )2
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If the variances and eventually the mean values of different sample components and/or streams 𝐼 
and 𝐼′ differ, the generalized formula (14) can be used. 
 

|𝑠𝑖,𝑗,𝑘 − 𝑠𝑖,𝑗,𝑘
′ | = √∑(
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Note that the mean value 𝐸ℎ  for the ℎ-th component of the samples in both, 𝐼 and 𝐼′, were 

previously omitted in (13), as (((ℎ)𝑠𝑖,𝑗,𝑘 − 𝐸ℎ) − ((ℎ)𝑠𝑖,𝑗,𝑘
′ − 𝐸ℎ)) = ((ℎ)𝑠𝑖,𝑗,𝑘−(ℎ)𝑠𝑖,𝑗,𝑘

′ ) 

 
Finally, if the variances and mean values are not known (or the computation takes too much time), 
the equations (10) and (11) may be used separately for each attribute, resulting in (15) and (16), 
respectively. Note that the error tresholds 𝜀ℎ  for different attibutes may differ from each other.  
 

| 𝑠𝑖,𝑗,𝑘
(ℎ)

− 𝑠𝑖,𝑗,𝑘
′(ℎ)

| < 𝜀ℎ , 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍, 0 ≤ ℎ < 𝑐 (15) 
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| 𝑠𝑖,𝑗,𝑘

(ℎ)
− 𝑠𝑖,𝑗,𝑘

′(ℎ)
| < 𝜀ℎ , 0 ≤ 𝑖 < 𝑟𝑒𝑠𝑋, 0 ≤ 𝑗 < 𝑟𝑒𝑠𝑌, 0 ≤ 𝑘 < 𝑟𝑒𝑠𝑍, 0 ≤ ℎ < 𝑐 (16) 


