

Local reflection symmetry in railway point cloud data

Maribor, 23rd January 2023

Luka Lukač, Andrej Nerat, Sašo Pečnik, David Podgorelec

Faculty of Electrical Engineering and Computer Science

Institute of Computer Science Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence

Content

- Motivation
- Present railway detection method
- Local reflection symmetry detection
 - Can it improve railway detection?
- Results

Motivation

- Obstacle on railways
- Railway detection in the LiDAR point clouds

Present railway detection method

- Exclusion of points based on reflectivity given by LiDAR
- Searching points between 10 and 20 cm above the surrounding points (height of the rail around 17 cm)
- Clustering based on closeness
- PCA for searching the rail line
- Merging two parallel lines (1.45 m apart)

Present railway detection method

Present method issues

- Unreliable reflectivity parameter (rust)
- Relying solely on the height can lead to a false positive
- Symmetry as an additional feature can be beneficial

Local reflection symmetry detection (example)

Local reflection symmetry detection

- Voxelization
- EO data \rightarrow vertical symmetry planes expected
- Basic symmetries found in horizontal voxel slices and then merged

Results (test case 1)

	Test case 1				
Number of points	24,389				
Voxel side [cm]	5	10	20	100	
Voxels	15,101,352	1,892,400	239,400	2,160	
Time of execution [s]	111.44	97.81	15.50	0.04	
Number of symmetries	4,699	17,939	13,749	167	
Index of best symmetry	137	1	11	49	

Results (test case 1)

Railway track 1: a) 5 cm b) 10 cm c) 20 cm d) 1 m

Results (test case 1)

Railway track 2: a) 5 cm b) 10 cm c) 20 cm d) 1 m

Results

	Test case 2				
Number of points	26,563				
Voxel side [cm]	5	10	20	100	
Voxels	22,545,600	2,830,400	353,800	1,600	
Time of execution [s]	210.68	117.22	20.54	0.02	
Number of symmetries	6,118	21,550	12,571	190	
Index of best symmetry	100	1	24	42	

Results (test case 2)

Railway track 1: a) 5 cm b) 10 cm c) 20 cm d) 1 m

Results (test case 2)

Railway track 2: a) 5 cm b) 10 cm c) 20 cm d) 1 m

Conclusion

- Issues:
 - manual finding of railways
 - non-unique railway recognition
 - perspective view of LiDAR

Future work

- Incorporation of the algorithm into the existing railway detection method
- Automatic detection of railways
- Speed improvements